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Abstract

A new formulation of the configuration interaction (CI) method is presented. It is based on the recently introduced
spin-flip (SF) approach. SF-CI target states are described as spin-flipping excitations from the reference Hartree-Fock
high-spin, e.g., M; = 1 (Joo)), determinant. The resulting model is both variational and size-consistent. Moreover, the
SF-CI model can describe within a single-reference formalism some inherently multi-reference situations, such as single
bond-breaking and diradicals. Initial benchmarks for the SF-CI model with single and double substitutions (SF-CISD)

are presented. © 2001 Published by Elsevier Science B.V.

1. Introduction

Wavefunctions which are variational, size-con-
sistent, and exact for two electrons are held in high
esteem within ab initio community [1]. Besides
aesthetic reasons, the failure of an approximate
model to satisfy one of the above criteria has se-
rious practical consequences. For example, wave-
functions which are not size-consistent cannot be
applied to study systematic changes within series
of homologically similar compounds, since the
quality of such a description degrades with in-
crease in molecular size. It is also well recognized
that the above properties are extremely difficult to
simultaneously satisfy within a single computa-
tionally feasible scheme. Historically, common
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wisdom evolved from assigning primary impor-
tance to variational properties of the model
towards sacrificing the latter for the sake of size-
consistency, i.e., from configuration interaction
(CI) to coupled-cluster (CC) methods (for com-
prehensive reviews, see [2-4]). While giving the
identical exact result in the limit of full CI (FCI),
the performance of the two approaches differs
dramatically at any truncated level. For example,
CC with singles and doubles (CCSD) and the
corresponding excited state theory, i.e., equation-
of-motion (EOM) CCSD, are capable of very ac-
curate predictions of molecular properties and
excitation energies (at equilibrium geometries and
for well-behaved molecules) [5-7]. However, the
corresponding CI model, CISD, has less satisfac-
tory performance in the context of chemical ap-
plications. The recent study of Olsen [8] has
demonstrated, that for small molecules the accu-
racy of CC is at least one level of excitations ahead
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of the corresponding CI, e.g., the accuracy of
CCSD may be achieved by CISDT, the gap in-
creasing rapidly with the molecular size increase.
On the other hand, the variational property, the
linearity of corresponding equations, and the
conceptual simplicity of CI approach make it a
very attractive electronic structure model.

The recently introduced spin-flip (SF) approach
[9,10] allows one to formulate and implement any
truncated CI scheme such that the resulting SF-CI
energies are both variational and size-consistent.
SF-ClI is also exact for two electrons (when double
or higher excitations are included). Below we in-
troduce the SF-CI method, analyze the conditions
under which it is size-consistent, and present initial
benchmarks of SF-CISD model for several sys-
tems: the ground and excited states of Be atom,
bond-breaking, and diradical transition states.

2. Theory

As in the corresponding CC model, the SF-CI
method employs a high-spin triplet state, e.g.,
M; =1 (Jac)) component, as the reference. The
target (M; = 0) states are described by spin-flip-
ping excitations [9,10]:

|¥) = U|¥0), (1)

where |P,) refers to the reference wavefunction
and U is the spin-flipping excitation operator. By
employing models of increasing complexity for the
reference, a hierarchy of SF models is introduced.
We have presented and benchmarked the follow-
ing SF models [9,10]: (i) SF-SCF or SF-CIS model
which uses an SCF wavefunction for the reference
and describes target states as a superposition of
singly excited determinants which involve SF of an
electron; (i) SF-MP2 or SF-CIS(D) model which
corrects SF-SCF energies by perturbation theory;
and (iii) SF optimized-orbitals CC doubles (SF-
OOCCD or SF-OD) model which employs an OO-
CCD wavefunction for the reference and describes
final states as single and double excitations which
flip the spin of one electron. Models (i)—(iii)) em-
ploy My =1 component of the triplet state, and
thus the operator U flips the spin of one electron
only. The (i)-(iii) equations in spin-orbital form

are identical to the traditional (non-SF) CIS [11-
13], CIS(D) [14], and EOM-OD [15] equations, but
they are solved in a different (i.e., spin-flipping)
subspace of excited determinants. As explained in
[9,10], the SF approach allows one to describe
multi-reference wavefunctions within a single-ref-
erence formalism and, therefore, it extends the
accuracy of single-reference models for bond-
breaking and diradicals.

One may consider another set of SF models by
employing higher spin, e.g., quintet |oooo), states
as the reference. In this case, the operator U flips
the spins of two electrons. Thus, no singly excited
determinants are present in the quintet reference
SF wavefunctions, and the counterpart of the
model (i) is SF-CID.

Here we present a new model, SF-CISD, which
is not only suitable for bond-breaking, but also
represents a significant improvement over tradi-
tional CISD because, as we show below, the SF-
CISD method is size-consistent. SF-CISD target
states are described as single and double excita-
tions (which flip the spin of one electron) from the
reference Hartree-Fock M; = 1 (Joo)) determinant
(see [9, Fig. 2]). Thus, the SF-CISD energies and
wavefunctions are found by diagonalizing the
Hamiltonian matrix in the basis of so generated
determinants. The programmable equations (in
spin-orbital form) can be derived from the EOM-
OD equations [15] by zeroing out all the terms
which involve contractions with ground state CC
amplitudes. Even though the scaling of the SF-
CISD model with system size is identical to that of
CCSD or 0O0-CCD models (N°), the computa-
tional cost is less due to the linear and Hermitian
nature of the problem. Moreover, unlike SF-CC
method, the reference state CC equations need not
to be solved.

There is no consensus concerning the definition
of size-consistency and size-extensivity. We adhere
to the terminology used in [16] and use the term
size-consistency to refer to the additive separability
of the energy in the limit of non-interacting frag-
ments:

Ezp = Ep + Ej, (2)

where Exp is the energy of a system composed of
two non-interacting fragments, A and B, at infinite
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separation, and E,, Ep are energies of the corre-
sponding fragments. Here, we restrict ourselves to
the case when A and B are closed shell systems.
For SF-CI or SF-CC models, total energy of a
target state consists of the reference energy and the
corresponding transition energy. Thus, Eq. (2) is
satisfied if (i) the reference energy of the composite
system is the sum of the reference energies for
fragments, and (ii) the transition energy is addi-
tive. The condition (i) is satisfied by SF-CI model
due to size-consistency of the Hartree-Fock
model. Below, we are going to prove that the
transition energy for the ‘excitation’ localized on
fragment A in the supermolecule is the same as the
transition energy for the fragment A, i.e., that
energies of target states on the fragment A are not
affected by the presence (at infinite distance) of the
fragment B. Thus, the quality of SF-CI description
would not degrade with the increase of molecular
size. However, the SF-CI correlation energy is not
additive.

Our proof of size-consistency of the SF-CI
model follows the the presentation of Koch et al.
[6] and Stanton [16]. We start by classifying all the
determinants into four groups: (i) the reference
determinant, |04 - Og) or simply |0); (i) determi-
nants involving excitations localized on fragment
A, |®4-0p) or |4); (iii) determinants involving
excitations localized on fragment B, |04 - ®p) or
|B); (iv) determinants that involve excitations of
electrons on both fragments, |®4 - @3) or |[4B) (i.e.,
those which describe simultaneous excitation of
both subsystems or electron transfer between
them). In the SF implementation employing a
triplet reference, the reference determinant is the
Hartree-Fock determinant describing the high-
spin, i.e., ao. (M; = 1) component of the reference
triplet state. Without loss of generality, we assume
that the two unpaired o-electrons are localized on
fragment A. Thus, |0,) is the Hartree-Fock de-
terminant for fragment A in the triplet state, and
|0p) is the Hartree—Fock determinant for fragment
B in the singlet state. Determinants (ii)—(iv) are
generated by spin-flipping excitations and thus
describe the M; = 0 components of the target sin-
glet and triplet states. Later in the discussion, we
use |0) and |p) to refer to (i) and (ii)—(iv) deter-
minants, respectively.

In the separated limit, the Hamiltonian opera-
tor of the composite system is the sum of those for
the individual fragments:

H = Hy + Hg. (3)

In the basis outlined above, the matrix of the
Hamiltonian (3) assumes the block-diagonal form:

Hy O 0 0

|0 Hw o0 0
0 0 0  Hag

where the shorthand notation Hpg = (P|H|Q) has
been used. The boldface zeros in the above equa-
tion appear due to the fact that the determinants
describing the target states in SF-CI do not inter-
act with the reference across the Hamiltonian since
they describe states with different number of « and
p electrons, i.e., different values of M:

(0lH|p) = (p|H|0) = 0. (5)

The Hap and Hpa blocks involve only matrix ele-
ments of the Hamiltonian which couple subsys-
tems A and B and vanish in the separated limit
[16]:

Hap = (O - Op|H, + Hp|0s - Pp)
= (Pp - O|HA|On - Py) + (P - Op|H3|04 - Pp)
= (Op|®@p) - (Pa|Hal0A) + (0a]| PA) - (@5|H|05)
=0 (Dp|HA|04) +0 - (Pp|H3|0) = 0. (6)

The tilded zeros, i.e., 0 from Eq. (4) require addi-
tional attention. The Hp ap block of the Hamilto-
nian matrix is zero due to the reasons similar to
Egs. (5) and (6):

Hpap = (Op - Pp|Hp + Hp| D - D))
= (0a - Dp|Ha|®p - Py)
+ (04 - Pp|Hp| P - )
= (@p|®p) - (Oa|HA|PA) + (0a]P4)
- (®g|Hp|®y)
= (®y|®}) - 0 + 0 - (Py|Hy|P}) = 0. (7)

By following a similar procedure, the Ha op matrix
element reduces to
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Hpnp = (@ - Op|Hx + Hy|P), - Pp)
= (D] P,) - (Op|Hp|Ps). (8)

The above presentation is independent of the levels
of excitation included in the CI expansion and the
multiplicity of the reference (as long as it is a high-
spin state). However, in order to analyze the term
(8), we have to consider specific models. In case of
the SF-CISD model employing a triplet reference,
the CI expansion includes single and double exci-
tations which flip the spin of one electron. Thus,
since the determinant @, includes at least one
electron excitation, the excitation level in the de-
terminant @y is necessarily restricted to a single
substitution. Thus, the term (®@g|Hy|0g) zeros out
because of the Brillouin’s theorem (if one employs
unrestricted Hartree—Fock orbitals for the refer-
ence determinant). It immediately follows that in-
clusion of higher excitations into the CI expansion
will cause non-zero Hu ap terms to appear. Thus,
SF-CISDT and models with higher excitation
levels will not be size-consistent unless appropriate
higher multiplicity states are used for the reference.
Applying a similar analysis, it is easy to show that
problematic, i.e., Hx ap terms, will be zero for SF-
CISDT employing the quintet state for the refer-
ence, and so on.

The target states are found by diagonalization
of matrix (4), and thus are defined by the following
secular equation:

Hy — ol 0 0 0

0 Hxp — ol 0 0

0 0 Hpp — ol 0

0 0 0 Hyp — ol
=0, 9)

where I stands for the unit matrix and w is the
corresponding eigenenergy. The condition (9) is
satisfied when

|H0() —COI| X |HAA —CUI' X |HBB —COI‘ X |HAB —COI|

=0 (10)
which means that eigenvalues of the two subsys-
tems are also eigenvalues of the combined system.

We have thus proven the size-consistency of the
transition energies in SF-CI model, subject to the

provisions mentioned in the preceeding paragraph.
The total energies, which are the sum of the ref-
erence energy and the corresponding transition
energy, are thus also size-consistent due to size-
consistency of the Hartree-Fock model.

Note that Eq. (10) has solutions corresponding
to the simultaneous excitations of both fragments,
or to the charge transfer states. The interpretation
of these roots requires caution as described in [16,
footnote 22]. For example, due to the truncated
nature of the operator U from the Eq. (1), the
EOM models fail to describe situations when both
fragments are excited with the same accuracy as
the excitations on individual fragments. Due to
similar considerations, the Eq. (2) does not mean
that for two non-interacting fragments, the total
SF energy of the composite system equals to the
sum of total SF energy of individual fragments.
Rather, the total SF energy is equal to the sum of
SF energy of fragment A and Hartree-Fock en-
ergy for the fragment B. Therefore, the accuracy of
SF-CISD description of the bond-breaking local-
ized at a reaction center in a large molecule would
not be affected by molecular size. However, SF-
CISD would fail to describe simultaneous break-
ing of two bonds, even in case of non-interacting
bonds.

3. Results and discussion

In this section we consider two examples of
theoretically challenging situations: bond dissoci-
ation in diatomics (the o-bond in HF and F»,) and
polyatomics (the m-bond in ethylene), and diradi-
cal transition states (cthylene torsion). We also
report results for the singly and doubly excited
states of beryllium.

We compare the SF-CISD models with the
traditional CISD model, and with previously in-
troduced SF models, i.e., SF-CIS, SF-CIS(D), and
SF-OD, as well as with multi-reference CI and the
valence OO-CCD(2) [VOO-CCD(2), or VOD(2)]
model [17,18]. In the cases of Be and HF, com-
parison with FCI is possible. The comparison be-
tween SF-CISD and SF-OD is particularly
interesting, since both models are size-consistent
and both include up to double excitations and,



526 A.L Krylov | Chemical Physics Letters 350 (2001) 522-530

Table 1
Total (hartree) and excitation (eV) energies for beryllium atom, 6-31G basis set
State FCI [9] SF-SCF [9] SD-CIS(D) SF-OD [9] SF-CISD 00-CCD [9] CISD
IS (1s%25?) —14.613545 —14.584111 —14.597209 —14.613578  —14.613056  —-14.613518 —14.613493
3P (1s*2s2p) 2.862 2.111 2.432 2.862 2.861 2.863 2.877
P (1s*2s2p) 6.577 6.036 6.254 6.578 6.578 6.581 6.598
3P (1s22p?) 7.669 7.676 7.671 7.675 7.696
'D (1s?2p?) 8.624 8.946 9.038 8.629 8.624 8.630 8.637

therefore, one may investigate the relative impor-
tance of variational properties (CISD) vs. effects of
higher excitations present in the OD due to the
exponential ansatz employed by the latter.

For all SF calculations, a spin-unrestricted
Hartree—Fock reference is used. Calculations of Be
and HF are performed using the split-valence
6-31G basis set [19]. The calculations of ethylene
employs a double-{ plus polarization (DZP) basis
set of contracted Gaussian functions, comprised of
the standard Huzinaga—Dunning [20,21] double-{
basis augmented by six d-type polarization func-
tions for first-row atoms [oq(C) = 0.75] and three
p-type polarization functions for hydrogen
[ap,(H) = 0.75]. For F,, we employ DZP + basis set
from [22], derived from the standard Huzinaga—
Dunning [20,21] double-{ (DZ) basis set by
uncontracting the most diffuse p-function and
augmenting it by a set of six Cartesian d-functions
[0 (F) = 1.580].

Calculations are performed using two ab initio
packages, Q-Chem [23] and PSI [24], to which
programs for (V)OO-CCD, and SF calculations
are linked.

3.1. Beryllium atom

Table 1 compares the FCI total and excitation
energies of Be with those calculated by SF-CIS,
SF-CIS(D), SF-OD, SF-CISD, OD, and CISD
methods. Even for this simple system with only
two valence electrons, the CISD excitation ener-
gies exhibit an order of magnitude larger errors
that EOM-OD ones. This is how the size-incon-
sistency of CISD manifests itself. When size-
consistency is restored (in SF-CISD), the
corresponding energies agree better with FCI than
the SF-OD ones. Thus, in this numerical example

the variational nature of SF-CISD turns out to be
more important than the effect of higher excita-
tions (i.e., simultaneous excitations of two pairs of
electrons) which are present in CC wavefunction.

We also use this simple example to numerically
demonstrate the size-consistency of SF-CISD.
Table 2 presents total and transition energies for
Be and Ne atom separated by 100 A. The SF-
CISD ground state energy of the combined system
is exactly the sum of the SF-CISD energy of the
ground state (X'S) of Be and the SCF energy of
Ne (X!S), and the corresponding excitation ener-
gies are exactly equal to the excitation energies of
beryllium, i.e., are not in any way affected by the
presence of Ne atom. The CISD ground state en-
ergy of the composed system is neither the sum of
the CISD energies of two fragments, nor the sum
of CISD energy of Be and SCF energy of Ne. The
errors in CISD transition energies increase dra-
matically in the composed system due to the non-
size-consistent nature of CISD.

3.2. HF

In this section, we discuss single bond-breaking
in HF. The comparison of the SF models with the

Table 2
Total (hartree) and excitation D(eV) energies for beryllium and
neon atoms separated by 100 A, 6-31G basis set

State SF-CISD CISD

Be ('S) Ne ('S)* ~143.086933 ~143.190023
Be (°P) Ne ('S) 2.861 5.671

Be ('P) Ne ('S) 6.578 9.391

Be (°P) Ne ('S 7.671 10.475

Be ('D) Ne ('S) 8.624 11.430

#SCF and CISD ground state energies of Ne atom are
—128.473876 and —128.586270 hartrees, respectively.
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Table 3
Total energies (hartree) for HF dissociation, 6-31G basis set

Ryr (A) FCI [9] SF-SCF [9] SF-CIS(D) [10] SF-OD [9] SF-CISD

0.7 —100.005489 -99.83726 -99.990 79 —100.006 18 —99.942 34
0.8 —-100.087 139 -99.929 34 —-100.07170 —100.087 50 -100.022 14
0.9 —-100.114 251 -99.968 11 —100.098 79 —-100.11447 —-100.048 17
0.95 —100.116 698 -99.975 88 —-100.101 53 -100.11692 —-100.05029
1.0 —-100.114 621 -99.978 53 —100.099 88 —-100.114 88 —-100.04797
1.1 -100.102115 -99.97378 —100.088 32 —-100.102 46 —-100.03509
1.2 —100.083938 -99.961 64 —-100.07097 —100.084 35 —100.016 56
1.2764 —100.068 708 —-99.950 30 —100.056 26 —-100.069 14 —100.001 05
1.4 —100.044 285 -99.93142 —-100.03252 —100.044 67 -99.976 14
1.6 —100.009 752 -99.904 71 -99.998 97 —100.009 95 -99.94091
1.8 -99.984078 -99.885 55 -99.974 37 —-99.984 02 -99.91504
2.0 -99.967201 -99.87348 —-99.958 50 -99.966 92 —-99.89897
2.1 -99.961 487 —-99.869 48 —-99.95320 -99.96111 —99.894 08
2.2 -99.957183 —-99.866 50 —99.949 23 —-99.956 73 —-99.890 80
2.4 -99.951 656 -99.86271 -99.944 17 -99.95111 —-99.88739
2.6 -99.948 741 -99.860 74 —99.941 53 -99.948 14 —99.886 08
2.8 -99.947238 —-99.859 79 —99.940 25 —-99.946 60 —99.885 54
3.0 -99.946 465 -99.859 39 —-99.939 68 —99.94582 —-99.88529
3.2 —99.946 065 —99.859 23 -99.93945 —99.94541 -99.885 16
3.4 -99.945857 -99.859 16 —-99.939 36 —-99.94520 —99.885 08

All SF calculations employ a 3% reference state.

corresponding single-reference approaches can be
found in [9,10]. At each level of theoretical
sophistication, SF models perform better than
corresponding traditional spin-restricted or spin-
unrestricted methods. Total energies for the
ground state potential energy curve of HF are
shown in Table 3, and the errors of SF models
against FCI are visualized in Fig. 1. The SF-CISD
model represents a considerable improvement over
less correlated SF-CIS, and exhibits a performance
that is similar to SF-OD.

33. F

Bond-breaking in F, is a rather challenging
example due to anomalously strong correlation
effects (see [10] for the discussion). Total energies
for the ground state potential energy curve of F,
are shown in Table 4, and are visualized in Fig. 2.
For this molecule, the difference between different
models is very large. The straightforward com-
parison of calculated D. [10] implies that the
VOD(2) model is capable of describing F-F bond-
breaking in the most accurate fashion: the corre-
sponding D, of 1.51 eV agrees better with the

experimental value of 1.66 than that of other
models (for example, MR-CISD value [22] is 1.22
eV). The curvature of the potential around equi-
librium is also better reproduced by VOD(2):
around equilibrium, the VOD(2) curve follows
closely the CCSD and the OD ones [22,29],

0.14 e—o SFECIS il
’ =——= SFCIS(D)
+—— SFOD
+—a SFCISD
Q
£ 009t B
2
<
=
g
g
m
0.04 B
G+ 00000+
-0.01 L L
0.5 1.5 2.5 3.5
R, bohr

Fig. 1. HF, 6-31G basis. The errors against FCI for SF-SCF,
SF-CIS(D), SF-CISD, and SF-OD models. All SF calculations
employ a *Z reference state.
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Table 4

F,, DZP + basis set
Rer (bohr) SF-CISD SF-OD [10]
2.0 —198.73186 —199.04083
2.2 —198.84827 —199.15337
2.4 —198.89976 —199.20368
2.5 —198.91136 —199.21532
2.6 —198.91689 —199.22123
2.7 —198.91817 —199.22313
2.8 —198.91657 —199.22237
2.9 —198.91312 —199.21992
3.0 —198.908 60 —199.21649
3.2 —198.898 34 —199.208 56
3.5 —198.88406 —199.19751
5.0 —198.86838 —199.17810
6.0 —198.86889 —199.17802

Total energies, hartree, for the ground X'Z, state of F, cal-
culated by SF models. SF models employ a 3Tl, reference.

whereas the MRCI curve yields a more shallow
potential. The CCSD harmonic frequency of
945 cm™' better agrees with the experimental value
of 917 cm™! than that of MRCI (i.e., 821 cm™})
[22]. Note that for this molecule there is only one
valence unoccupied orbital, and the VOO-CCD
model is equivalent to the full valence CASSCF
and therefore the VOD(2) provides a fully bal-
anced description. This together with fully size-
extensive nature of VOD(2) suggests that the

0.057

0.047

0.037

0.027 r

Energy, hartree

0.017 — MRCI
—— SFOD
=—a SFCISD
0.007 +——= SFCIS(D) 1
*——* VOD(2)
-0.003 . L .
2 3 4 5 6

R, bohr

Fig. 2. F,, DZP + basis. All curves are shifted such that their
respective energy minima are zero. The SF-CIS(D) and SF-OD
curves are very close to MRCI one. SF-CISD follows closely
VOD(2).

VOD(2) curve is more credible than that of the
size-inconsistent MRCI. As shown in [10], the SF-
OD and SF-CIS(D) curves follow the MRCI curve
very closely; the former giving a slightly larger D,
of 1.24 eV. However, the limitations of the basis
employed are not known. Thus, it is not clear
whether VOD(2) or MR-CISD is closer to the
limiting value of D, in this basis set. As can be seen
from Fig. 2, the SF-CISD curve follows VOD(2)
very closely, as opposed to SF-OD curve which
follows MR-CISD one. Thus we conclude that,
similarly to the previous case, the SF-CISD per-
forms better than the SF-OD model. However, a
definite conclusion can be made only after more
extensive benchmarks of both models are per-
formed.

3.4. Ethylene torsion

Ethylene at a twisted (D,g) geometry is a ge-
neric example of a diradical transition state. Due
to the orbital degeneracy between m and m* orb-
itals (in a valence-bond picture) at the barrier,
single-reference methods overestimate the barrier
height and produce potential energy curves with
unphysical cusps. The balanced description of the
torsion potential can be achieved by employing
multi-reference wavefunctions, e.g., two-configu-
rational SCF, further corrected for dynamical
correlation (TC-CISD). Alternatively, accurate
curves can be obtained by the VOD(2) method.
As shown in [10], there is small difference between
the two models, and (as in the previous example)
it is unclear which is closer to the exact value.
The SF models also produce cuspless curves
[9,10]. They employ |mam*a) triplet state as the
reference.

Table 5 shows total energies along the torsional
coordinate calculated by CISD, TC-CISD, SF-
CISD, and SF-OD methods, as well as unoptim-
ized barrier heights. Corresponding potential en-
ergy curves are shown in Fig. 3, which also shows
SF-CIS, SF-CIS(D), and VOD(2) results. As in the
previous example, the SF-OD curve closely follows
the TC-CISD one, the frozen barrier height being
3.23 and 3.27 eV, respectively. The SF-CISD curve
however is closer to the VOD(2) one, the corre-
sponding barrier values being identical (3.43 eV).
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Table 5

Ethylene torsion, DZP basis
Angle (degrees) SF-CISD SF-OD [9] TCSCF-CISD [10] CISD
0 —78.14539 —78.388 38 —78.36589 -78.35670
15 —78.14096 —78.38393 -78.36143 —78.35206
30 —-78.12767 —78.370 69 —78.348 12 —-78.33813
45 —78.105 68 —-78.349 08 —78.326 34 -78.31501
60 —-78.07582 —78.32031 —-78.29724 —78.28303
75 —78.04125 —78.28827 -78.26471 —78.242 88
80 —78.030 59 —-78.27895 —-78.25522 —78.22788
85 -78.02247 -78.27218 —78.248 33 -78.21218
90 —-78.01929 —78.269 64 —78.24574 —78.19590
AE (eV) 3.43 3.23 3.27 4.38

Total energies (hartree) for TC-SCF, SF-CISD, and SF-OD methods. Unoptimized barrier height, AE = E(90°) — E(0°), is also
shown. (AE for RHF, OD, and VOD(2) methods are 4.76, 3.910, and 3.43 eV, r§spective1y [25]. AE for SF-CIS and SF-CIS(D) is 2.92
and 3.19 eV, respectively [9,10].) Geometry used: rcc = 1.330 A, rcy = 1.076 A, opcn = 116.6°.

‘
—— TCCISD
»——= SFCISD
4+—4 SFOD
0.144 - e SFCIS(D)
v—v SFCIS
+——+ VOD(2)
8 =—=a CISD
E
5
£ 0119 - 1
=
o0
Q
E=1
m
0.094 - 1
0.069 * ! !
45 60 75 90 105 120 135

Torsion angle, deg

Fig. 3. Ethylene torsion, DZP basis. All curves are shifted such
that the energy at 0° is zero.

The CISD curve exhibits a sharp cusp and over-
estimates the barrier height by more than 1 eV.

4. Conclusions

We have presented a new CI method based on
the recently introduced SF approach [9]. Similar to
the traditional formulation, the energies and
wavefunctions are found by diagonalizing the
matrix of the Hamiltonian in the basis of the de-
terminants truncated at a certain excitation level,
e.g., up to double excitations in CISD. In the SF

formulation, the above determinants are generated
by n-electron excitations which flip the spin of one
electron from the reference Hartree-Fock M, = 1
(|oey) determinant. The resulting model is both
variational and size-consistent. Moreover, SF-CI
model can describe within a single-reference for-
malism inherently multi-reference situations, such
as bond-breaking and diradicals. Initial bench-
marks for the SF-CISD model are presented and
compared with a CC based method, SF-OD. For
all test cases considered, the SF-CISD model per-
forms slightly better than SF-OD, thus suggesting
that the variational properties of the former are
more important than the presence of higher exci-
tations (i.e., simultaneous excitations of pairs of
electrons) in the latter. However, a definite con-
clusion can be made only after more extensive
benchmarks of both models are performed.
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