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We present an algorithm for reducing the computational work

involved in coupled-cluster (CC) calculations by sparsifying the

amplitude correction within a CC amplitude update procedure.

We provide a theoretical justification for this approach, which

is based on the convergence theory of inexact Newton itera-

tions. We demonstrate by numerical examples that, in the sim-

plest case of the CCD equations, we can sparsify the

amplitude correction by setting, on average, roughly 90% non-

zero elements to zeros without a major effect on the conver-

gence of the inexact Newton iterations.
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Introduction

The coupled-cluster (CC) theory[1] is the most successful

approach for treating dynamic electron correlation in quantum

chemistry.[2–4] The CC wave function is generated by the expo-

nential expansion of the cluster operator; thus, compared with

an equivalent linear (configuration interaction) ansatz, it

includes configurations of higher excitation levels appearing as

products of lower-order cluster operators. Among the advan-

tages of the CC hierarchy of approximations are size-

extensivity, orbital-rotation invariance within either occupied

or virtual space, and a systematic convergence towards the

exact solution in the full configuration interaction limit.[2] The

single-reference CC formalism can be easily extended to tackle

various multiconfigurational wave functions using the EOM-CC

approach.[5–8] CC theory has also been combined with a multi-

reference ansatz giving rise to multireference CC

methods.[3,9–14]

Unfortunately, the size of systems amenable to CC treatment

(or to other many-body methods) is limited by the polynomial

scaling of the CC methods. In the lowest-level CC models,[4]

the CC operator is truncated at the level of double excitations

giving rise to the CCD (coupled-cluster doubles) and CCSD

(coupled-cluster with single and double substitutions) meth-

ods. Thus, the number of unknown variables (amplitudes) is

on the order of Oðn2
on2

vÞ and the computational complexity

scales as Oðn2
on4

vÞ, where no and nv are the number of the

occupied and virtual orbitals, respectively (the separation

between the virtual and occupied subspaces is determined by

the reference determinant). However, a large fraction of the

amplitudes is known to be small; these amplitudes give negli-

gible contributions to the total correlation energy. If efficiently

exploited, the sparsity may lead to a linear-scaling implemen-

tation of a correlated method. In other words, the number of

cluster amplitudes can be significantly reduced if sparsity and

linear dependencies are taken into account. Many approaches

attempt to exploit the sparsity of the amplitude tensor or to

construct its compact representation through some type of

low-rank tensor decomposition techniques. These approaches

often exploit the locality of correlation[15–34] or use mathemati-

cal decomposition techniques such as the singular value (and

high-order singular value) decomposition, density fitting, Cho-

lesky decomposition, canonical product decomposition, frozen

natural orbitals, etc to represent the tensors in a compact

form.[35–58] This article does not aim at formulating a local or

low-scaling CC method; rather, it presents a reduced-cost algo-

rithm that takes advantage of sparsity during solving the CC

equations, whereas the final converged amplitudes are not

truncated giving rise to the exact (for a given CC method) cor-

relation energy.

We present a numerical method for solving the CC ampli-

tude equations, which can be written in the general form as

RðTÞ50; (1)

where the T is an amplitude tensor and R is a (nonlinear) func-

tion of T. Our method uses fewer floating point operations

than the standard inexact Newton method. The cost reduction

results from exploiting sparsity in the successive corrections to

the approximate CC amplitudes, rather than the amplitudes

themselves. The sparsity allows us to reduce the cost of tensor

contraction required to evaluate R(T) in each inexact Newton

step (i.e., CC amplitudes’ update equation).

The proposed approach is close in spirit to the recursive for-

mula for constructing the Fock matrix in self-consistent field
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(SCF) calculations (incremental Fock build) by Alml€of et al.,[59]

which, barring numerical instabilities, leads to the exact SCF

solution. The technique has been successfully employed in

direct SCF calculations, and its numerical properties have been

studied.[60] Using sparsified corrections to solve the CC equa-

tions has several algorithmic and numerical implications that

we present in this article.

For the sake of simplicity, we focus on the CCD equation

(T � T2), which is a ‘second-order’ nonlinear equation in T. T2

is a fourth-order tensor of dimension no3no3nv3nv. In the

next section, we establish the notations used in the rest of the

article and outline the basic strategy for keeping the ampli-

tude correction sparse. In section “The Implementation,” we

discuss practical issues that are important for developing an

efficient implementation of the algorithm. Computational

examples presented in section “Numerical Examples” illustrate

the potential cost savings that can be achieved by our

approach.

Theory

Projected CC equations

The CC ansatz has the following form:

jWi5eT jU0i ; (2)

where jU0i is the reference wave function (typically, the

Hartree-Fock Slater determinant) and T is the cluster operator

defined as T5T11T21T31. . . (each Tn consists of a linear com-

bination of all possible n-tuple excitation operators). The coef-

ficients of the linear combination are called the amplitudes.

Inserting the CC ansatz into the Schr€odinger equation and

multiplying from the left by e–T yields

e2T HeT jU0i5EjU0i ; (3)

where �H � e2T HeT is the similarity transformed Hamiltonian,

which is not Hermitian. To obtain enough equations to deter-

mine the energy and amplitudes, eq. (3) is projected into the

Hartree-Fock determinant and into the manifold of excited

determinants (of the same excitation level as the truncation

level in T). Thus, the CC energy is

hU0j �HjU0i5E ; (4)

and the projected amplitude equations are

hUlj �HjU0i5EhUljU0i50 ; (5)

where Ul represents all singly, doubly, or higher excited deter-

minants with respect to U0.

The inexact Newton algorithm

The simplest iterative scheme for solving eq. (5) is Newton’s

method, which produces a sequence of approximate ampli-

tudes T(k) by the following updating formula:

T ðk11Þ5T ðkÞ1DðkÞ; (6)

where the Newton correction amplitude D(k) is obtained

from

DðkÞ52J21ðT ðkÞÞRðT ðkÞÞ; (7)

with J(T(k)) being the Jacobian of the nonlinear function R eval-

uated at T(k).

Evaluating and inverting exact J(T(k)) is expensive. However,

the Jacobian matrix is known to be diagonally dominant in

the canonical representation. Therefore, in practice, one often

replaces J(T(k)) with approximate diagonal Ĵ . The diagonal ele-

ments of Ĵ are chosen to be orbital energy differences. As a

result, the updating formula for T(k) becomes

T ðk11Þ5T ðkÞ2Ĵ
21

RðT ðkÞÞ: (8)

An algorithm based on the above updating formula is

called an inexact Newton scheme, which is summarized in

Algorithm 1.

The new algorithm

An iteration based on eq. (8) can be regarded as an

inexact Newton method because we may view the update

D̂
ðkÞ

52Ĵ
21

RðT ðkÞÞ as an approximate solution to the Newton

correction equation:

JðT ðkÞÞD̂ðkÞ52RðT ðkÞÞ:

It is well known[61,62] that if D̂
ðkÞ

satisfies the condition

jjJðT ðkÞÞD̂ðkÞ1RðT ðkÞÞjj � gkjjRðT ðkÞÞjj (9)

for a sequence of what is often known as the “forcing”

parameters gk< 1, then T(k) is guaranteed to converge to the

solution of eq. (1), provided T(0) is sufficiently close to the

solution.

Algorithm 1: The inexact Newton algorithm for
solving CC amplitude equations.

Input: An initial approximation of T ð0Þ, a convergence

tolerance tol;

Output: Approximate T that satisfies jjRðTÞjj � tol.

1: k 5 0;

2: while jjRðT ðkÞÞjj > tol do

3: Evaluate residuals RðT ðkÞÞ.
4: Construct a correction D̂

ðkÞ
52Ĵ

21
RðT ðkÞÞ.

5: T ðk11Þ  T ðkÞ1D̂
ðkÞ

;

6: k  k11;

7: end while
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Although the condition listed in eq. (9) is generally diffi-

cult to verify because computing the true Jacobian J(T(k))

is prohibitively expensive, it is often the case that J(T(k)) is

diagonally dominant and its diagonal is identical to that of

Ĵ . It follows that we have JðT ðkÞÞĴ21
5I1Ek for some matrix

Ek that is relatively small in magnitude. As a result, we

have

jjJðT ðkÞÞD̂ðkÞ1RðT ðkÞÞjj5jj2ðI1EkÞRðT ðkÞÞ1RðT ðkÞÞjj5jjEk RðT ðkÞÞjj
� jjEkjjjjRðT ðkÞÞjj:

If jjEkjj � gk < 1, then eq. (9) holds.

Note that in the first few iterations, jjRðT ðkÞÞjj is likely to be

relatively large. Hence, it is relatively easy to obtain an inexact

correction D̂
ðkÞ

that satisfies eq. (9). There are likely many ways

to modify D̂
ðkÞ

without affecting the convergence of the inex-

act Newton iteration. In this paper, we propose to modify D̂
ðkÞ

by setting the elements that are “small” in magnitude to zero.

This can be viewed as a “sparsification” process. By sparsifying

D̂
ðkÞ

and keeping the number of nonzero elements in D̂
ðkÞ

small, we can reduce the tensor contraction cost for evaluating

R(T(k)) if an efficient sparse tensor contraction software is

available.

To sparsify D̂
ðkÞ

, we define a sequence of dynamically

adjusted thresholds sk, and set the elements of D̂
ðkÞ

that are

less than sk in absolute value to zeros. These zeros do not

need to be stored if a sparse representation of the D̂
ðkÞ

tensor

is implemented. By setting elements of D̂
ðkÞ

to zeros, we effec-

tively introduce a small perturbation W in D̂
ðkÞ

. One can

rewrite D̂
ðkÞ

as

D̂
ðkÞ

52Ĵ
21

RðT ðkÞÞ1W;

where W contains elements of D̂ðkÞ that are to be dropped.

If W can be chosen to satisfy

jjWjj < ajjRðT ðkÞÞjj (10)

for some constant a� 1, we have

jjJðT ðkÞÞD̂ðkÞ1RðT ðkÞÞjj5jj2Ek RðT ðkÞÞ1JðT ðkÞÞWjj
� jjEkjj1ajjJðT ðkÞÞjj
� �

jjRðT ðkÞÞjj: (11)

If jjEkjj1ajjJðT ðkÞÞjj < 1, then one can expect that the sparsi-

fied inexact Newton algorithm will still converge. Note that in

order to make jjEkjj1ajjJðT ðkÞÞjj not too much larger than

jjEkjj, a should be chosen to be much smaller than

1=jjJðT ðkÞÞjj. However, since the choice of a and jjRðT ðkÞÞjj will

determine the value of the sparsification threshold (sk) in the

kth iteration, it should not be too small to prevent D̂ðkÞ from

being sparsified.

As T(k) converges to the solution of eq. (1), jjRðT ðkÞÞjj
decreases. Consequently, for a fixed a, sk should also be gradu-

ally reduced, to ensure that eq. (10) is satisfied. Because jjD̂ðkÞjj

generally becomes smaller also, it is still possible to identify

elements in D̂
ðkÞ

that can be set to zero without violating

eq. (10).

To facilitate sparse tensor contraction, we need to rewrite

the expression for R(T(k11)) by substituting T(k11) with

T ðk11Þ5T ðkÞ1D̂
ðkÞ

(12)

and regrouping terms. The terms that do not contain D̂
ðkÞ

do

not need to be recomputed. They can be reused from the

previous iteration. Only the terms that contain D̂
ðkÞ

need to

be computed. However, these are the terms that can be

computed by using sparse contraction techniques. To illus-

trate this, let us assume that R(T(k)) contains second-order

terms in the form of TVT (we use the notation TV to denote

the contraction of tensors T and V). We can rewrite T ðk11ÞV

T ðk11Þ as

ðT ðkÞ1D̂
ðkÞÞVðT ðkÞ1D̂

ðkÞÞ5T ðkÞVT ðkÞ1T ðkÞVD̂
ðkÞ

1D̂
ðkÞ

VT ðkÞ

1D̂
ðkÞ

VD̂
ðkÞ
:

(13)

The intermediate terms, T ðkÞVT ðkÞ; T ðkÞV , and VT(k), can be

saved from the previous iteration and therefore do

not need to be recomputed. Once the evaluation of eq.

(13) is completed, we overwrite T ðkÞVT ðkÞ with this new

product. Likewise, T(k)V and VT(k) are overwritten by T ðkÞ1

D̂
ðkÞ

V and VT ðkÞ1VD̂
ðkÞ

once D̂
ðkÞ

V and VD̂
ðkÞ

are

computed.

The Implementation

Tensor contraction and intermediates

The programmable CC amplitude equations contain many

terms that require high-order tensor contractions (see, for

example, Refs. [58,63]). The CCD equations are of the simplest

type in which only double excitation are considered. Using the

standard quantum-chemistry notation, we can write the CCD

amplitude equations as follows:

Algorithm 2: Sparse correction update procedure
for the CCD amplitude equations.

Input: An initial approximation of T ð0Þ, a convergence

tolerance tol;

Output: Approximate T that satisfies jjRðTÞjj � tol.

1: k 5 0;

2: while jjRðT ðkÞÞjj > tol do

3: Calculate a new threshold s from jjRðT ðkÞÞjj;
4: Construct a sparse correction D̂

ðkÞ
by thresholding

jrab
ij j > s, where rab

ij 2 jjRðT ðkÞÞjj and multiplying by Ĵ
21

;

5: Calculate all contractions with sparse D̂
ðkÞ

.

6: Update intermediates. Updated Iab
ij corresponds to Rðk11Þ.

7: T ðk11Þ  T ðkÞ1D̂
ðkÞ

;

8: k  k11;

9: end while

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 1059–1067 1061

http://onlinelibrary.wiley.com/


rab
ij 5hijjjabi2PðijÞ

X
k

tab
ik f k

j 1PðabÞ
X

c

tac
ij f b

c

1
1

2

X
kl

tab
kl hkljjiji1 1

2

X
cd

tcd
ij habjjcdi

1PðijÞPðabÞ
X

kc

tac
ik hkbjjcji

1
1

4

X
klcd

tcd
ij tab

kl hkljjcdi

2PðijÞ 1

2

X
klcd

tab
ik tcd

jl hkljjcdi2PðabÞ 1

2

X
klcd

tac
ij tbd

kl hkljjcdi

1PðijÞPðabÞ 1

2

X
klcd

tac
ik tdb

lj hkljjcdi ;

(14)

where PðpqÞApq5Apq2Aqp is an anti-symmetrization operator, f

denotes the matrix of the one-electron Fock operator, and

hijjjabi represents an antisymmetrized two-electron integrals

(The reference determines the separation of orbital space into

the occupied and virtual subspaces. Here we use indexes i; j; k;

. . . and a; b; c; . . . to denote the orbitals from the two subspa-

ces. To denote orbitals that can be either occupied or virtual,

letters p; q; r; s; . . . will be used. f p
q and hpqjjrsi denote the

matrix elements of the Fock operator and antisymmetrized

two-electron repulsion integrals, respectively).

Separating the previous iteration amplitude T(k) and new

correction D̂ðT ðkÞÞ, inserting eq. (12) into (14), and using

vrs
pq5hrsjjpqi, the linear terms on the right hand side of eq.

(14) can be rewritten as

PðabÞtac
ij f b

c 2PðijÞtab
ik f k

j 1
1

2
tab

kl vkl
ij 1

1

2
tcd

ij vab
cd 1PðijÞPðabÞtac

ik vkb
cj

1PðabÞD̂ac

ij f b
c 2PðijÞD̂ab

ik f k
j 1

1

2
D̂

ab

kl vkl
ij 1

1

2
D̂

cd

ij vab
cd 1PðijÞPðabÞD̂ac

ik vkb
cj ;

(15)

while quadratic terms assume the following form

1

4
tcd

ij tab
kl vkl

cd2PðijÞ 1

2
tab

ik tcd
jl vkl

cd2PðabÞ 1

2
tac

ij tbd
kl vkl

cd

1PðijÞPðabÞ 1

2
tac

ik tdb
lj vkl

cd

1
1

4
D̂

cd

ij tab
kl vkl

cd2PðijÞ 1

2
D̂

ab

ik tcd
jl vkl

cd2PðabÞ 1

2
D̂

ac

ij tbd
kl vkl

cd

1PðijÞPðabÞ 1

2
D̂

ac

ik tdb
lj vkl

cd

1
1

4
tcd

ij D̂
ab

kl vkl
cd2PðijÞ1

2
tab

ik D̂
cd

jl vkl
cd-PðabÞ1

2
tac

ij D̂
bd

kl vkl
cd

1PðijÞPðabÞ 1

2
tac

ik D̂
db

lj vkl
cd

1
1

4
D̂

cd

ij D̂
ab

kl vkl
cd2PðijÞ 1

2
D̂

ab

ik D̂
cd

jl vkl
cd2PðabÞ 1

2
D̂

ak

ij D̂
bd

kl vkl
cd

1PðijÞPðabÞ 1

2
D̂

ac

ik D̂
db

lj vkl
cd :

(16)

By standard convention, the repeated indices (either the sub-

scripts or the superscripts) in eqs. (15) and (16) are the indices

to be contracted. The remaining indices are the indices of the

resulting tensor product. For example, in tac
ik vkb

cj , k, and c are

indices to be contracted and the resulting tensor is indexed

by i, a, b and j; the cost of the contraction is O(N6).

At the kth iteration, the zero-order term hijjjabi, as well as

all linear terms that involve the contractions of integrals v and

the previous amplitudes t, are assumed to have already been

evaluated in the (k–1)th iteration, so they are stored as the Iab
ij

intermediate. Therefore, only the contractions with D̂ are per-

formed and the result is added to the intermediate.

The update of the quadratic terms needs to be performed

with care. Ideally, we would like to keep the contracted prod-

ucts of the integral and the previous amplitude as intermedi-

ates in the second and third rows of eq. (16) so that we only

need to contract the sparse correction D̂ with the intermedi-

ates. However, for some of the quadratic terms in (16), this

approach would result in a factorization that involves expen-

sive contractions and a higher storage requirement for the

intermediates.[15,64] For example, if we were to keep Icd
ab � tab

kl

vkl
cd as an intermediate in the first term of the second row of

eq. (16), we would need to update Iab
cd by performing

Iab
cd  Iab

cd 1tab
kl D̂

kl

cd; (17)

after the contraction of D̂
cd

ij with the previous Iab
cd is completed.

However, the asymptotic complexity of the contraction tab
kl D̂

kl

cd

in eq. (17) is Oðn2
on4

vÞ, which is less favorable than the overall O
ðn4

on2
vÞ complexity resulting from contracting D̂

cd

ij with vkl
cd first

followed by another contraction of the contracted product with

tab
kl when nv � no, even though the approach based on form-

ing and updating Iab
cd involves only sparse contractions. In terms

of memory requirement, if we were to keep the product of tab
ik

and vkl
cd as an intermediate in the second term of the third of

row in eq. (16), we would need Oðn2
on4

vÞ storage, which is

excessive compared with the amplitude tensor of the size n2
on2

v.

We highlight the terms in eq. (16) that require special atten-

tion by using bold font. For these terms, we do not keep the

product of the integrals and the previous amplitudes as an

intermediate. The less favorable complexity and storage require-

ment for keeping such intermediates is summarized and com-

pared in Table 1 with the standard approach, which contracts

the sparse correction with the integrals first followed by

another dense contracts of the product with the amplitudes.

Table 1. The computational scaling and memory requirements for keep-

ing and updating intermediates marked by bold font in eq. (16) and a

contraction scheme, which does not require these intermediates.

Contraction Intermediate Memory Scaling

D̂
cd

ij ðvkl
cd tab

kl Þ
Iab
cd  Iab

cd 1vkl
cdD̂

ab

kl n4
v n2

on4
v

ðD̂cd

ij vkl
cdÞtab

kl
D̂

cd

ij vkl
cd n4

o n4
on2

v

ðtab
ik vkl

cdÞD̂
cd

jl
Iabl
icd  Iabl

icd 1D̂
ab

ik vkl
cd n2

on4
v n3

on4
v

tab
ik ðvkl

cdD̂
cd

jl Þ vkl
cdD̂

cd

jl n2
o n3

on2
v

ðtad
ij vkl

cdÞD̂
bd

kl
Iakl
ijd  Iakl

ijd 1D̂
ac

ij vkl
cd n4

on2
v n4

on3
v

tad
ij ðvkl

cdD̂
bd

kl Þ vkl
cdD̂

bd

kl n2
v n2

on3
v
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We now give an estimate of possible savings in terms of the

number of operations when the correction amplitude is sparse.

Only O(N6) terms are taken into account and the restricted

Hartree-Fock spin-orbitals are assumed. We use z(k) to denote

the sparsity of D̂
ðkÞ

, which is the percentage of nonzero ele-

ments remaining in D̂
ðkÞ

after the sparsification. The number

of operations required in all contractions used by our algo-

rithm in step k is proportional to

cðkÞ53zðkÞ � n4
on2

v120zðkÞ � n3
on3

v1zðkÞ � n2
on4

v1n4
on2

v : (18)

If we denote by c the number of contractions in the original

dense algorithm, it is easy to verify that

c52n4
on2

v18n3
on3

v1n2
on4

v : (19)

Figure 1 shows the ratio of c(k) over c for different z(k) values

and different nv/no ratios. As follows from eq. (18), a larger

reduction of operations can be achieved when nv � no with

the asymptotic limit zðkÞOðn2
on4

vÞ.

Sparsifying the correction

To determine which elements in D̂
ðkÞ

can be set to zero to

sparsify the correction, we need to first choose the parameter

a in eq. (10). Ideally, a should be chosen to satisfy

a <
c

jjJðT ðkÞÞjj ;

for some small fudge factor c< 1 (e.g., c 5 0.1). Since J(T(k)) is

not known, we take its diagonal part

max
i;j;a;b

5�a1�b2�i2�j

as an approximate jjJðT ðkÞÞjj. Once a is chosen, we can set sk

to ajjRðT ðkÞÞjj as suggested in eq. (10).

If we treat all tensors as vectors and choose jj � jj to be the

1-norm (which is given by the element with the largest abso-

lute value) in eq. (10), we can simply sparsify D̂
ðkÞ

by setting

elements whose absolute values are smaller than sk to zero.

If we choose jj � jj to be the vector 2-norm, then the sparsifi-

cation process can be carried out by sorting the absolute

values of all elements of R(T(k)) and summing the sorted ele-

ments in an increasing order until

ffiffiffiffiffiffiffiffiffiffiffiffi
XM11

i51

r2
i

vuut > sk: (20)

for the smallest integer M, where r1 � r2 � � � � are the sorted

elements of jRðT ðkÞÞj. The first M elements of the sorted correc-

tion are set to zero. To reduce the cost of sorting, we can first

determine a threshold sk=
ffiffiffi
n
p
� ŝ � sk, and check if (20) is sat-

isfied for the elements whose absolute values are below the

threshold ŝ. This threshold can be adjusted until eq. (20) is sat-

isfied for as many elements in the correction tensor as

possible.

Instead of using eq. (20), an alternative method for sparsify-

ing the correction tensor D̂ðT ðkÞÞ is to simply set a fixed num-

ber of elements of D̂ðT ðkÞÞ with the smallest absolute values to

zeros. However, this scheme may lead to an increase in the

number of the inexact Newton iterations required to reach

convergence, as shown in the next section.

The sparsification approach introduced here for the CCD

model can be easily extended for other CC models. For an

arbitrary Tn, where n is the excitation level, we can rewrite eq.

(12) as n-specific equation

T ðk11Þ
n 5T ðkÞn 1D̂

ðkÞ
n ; (21)

where D̂
ðkÞ
n is sparsified correction using the Algorithm 2 with

threshold sn calculated from jjRnðT ðkÞÞjj. All Tn in amplitude

equations have to be replaced by eq. (21) and we can define

intermediates the same way as described in the previous sec-

tion. If n is the maximal excitation level, the memory require-

ments for storing the intermediates scales as Nn, where N is

the size of the system.

Numerical Examples

We now illustrate the effectiveness of using sparse correction

for solving the amplitude equations using a pilot CCD code.

We perform numerical tests for seven benchmark systems.

They range from small molecules (LiF and O3) to larger sys-

tems—pentane, alanine, asparagine, dodecane, and porphine

(see Supporting Information for geometries). Alanine and

asparagine are chosen as medium-size nonsymmetric systems,

dodecane and porphine represent large molecules. Our code

is written in MATLAB (MATLAB R2014b, Mathworks, Natick,

MA). The correctness of the implementation is validated

against the CCD code in NWChem.[65] Our code uses the Fock

matrix, two-electron integrals and orbital energies that are

dumped from NWChem. The CCD equations are solved by per-

forming inexact Newton iterations; DIIS convergence accelera-

tion algorithm was not used.

Figure 1. The ratio of c(k) over c as a function of z(k) and nv when no is set

to 50.
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The calculations are based on the restricted Hartree-Fock

reference and spatial symmetry is taken into account. That is,

the code works only with nonzero amplitudes such that all

amplitudes which are zero due to symmetry are ignored. Per-

mutational symmetry is taken into account when counting

nonzero elements, that is, all equivalent amplitudes due to

permutation symmetry are counted only once. All electrons

are active in our calculations.

The initial guess of the amplitude is set to zero. We set the

parameter a in (10) to 0:1=max i;j;a;bð�a1�b2�i2�jÞ, and use the

infinity norm to determine which elements in D̂ðT ðkÞÞ are set

to zero. We set the convergence tolerance to tol 5 1027,

that is, we terminate the iterations when the residual norm

jjRðT ðkÞÞjj is <1027.

Figures (2 and 4), and 5 show the change of residual norms

as a function of the iteration number k for ozone (using the

cc-pVQZ basis set), dodecane (with the 6-311G basis set), and

dodecane with the cc-pVDZ basis set, respectively. The residual

history associated with the original inexact Newton iteration in

which no elements in D̂ðT ðkÞÞ were set to zero is shown as the

blue curve in these figures for comparison.

To quantify the degree of cost reduction in each

iteration, we track the percentage of nonzero elements

retained in D̂ðT ðkÞÞ after the sparsification process is performed

and denote the percentage by z(k). An element of D̂ðT ðkÞÞ,
denoted by di, is considered to be numerically nonzero if

jdij > 10216jdmax j; (22)

where dmax is the element of D̂ðT ðkÞÞ with the largest absolute

value. Figure 3 shows that the variation of z(k) with respect to

k is relatively small after the first few iterations.

We define the average percentage of nonzero elements in

the sparsified D̂ðT ðkÞÞ as

z5

XK

k51

zðkÞ

K
; (23)

Figure 2. Convergence of CCD equations for O3 using various levels of

sparsification measured by the average sparsity of the amplitude correction

z defined by eq. (23). The cc-pVQZ basis set was employed.

Figure 3. The variation of the sparsity in the amplitude correction with

respect to the CCD iteration number k measured by z(k) for the O3 mole-

cule. Each curve corresponds to a curve labeled by the same average spar-

sity z in Figure 2.

Figure 4. Convergence of CCD equations for dodecane at the equilibrium

geometry using various levels of sparsification z. The 6-311G basis set was

employed.

Figure 5. Convergence of CCD equations for dodecane at the equilibrium

geometry using various levels of sparsification z. The cc-pVDZ basis set was

employed.
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where K is the total number of iterations required to reach

convergence.

Figure 2 also shows additional convergence curves obtained

by progressively relaxing the tolerance sk, which results in set-

ting more elements of D̂ðT ðkÞÞ to zero (i.e., keeping fewer non-

zero elements).

As one can clearly see, if 10% of the nonzero elements in D̂ð
T ðkÞÞ are retained on average, the convergence rate of the inex-

act Newton iteration is nearly identical to that without sparsifi-

cation. Only two more iterations (with a total 21 iterations) are

required to reach convergence. When the number of retained

nonzero elements is lowered to 2.2%, more than 100 iterations

are required to reach convergence. Similar pattern in conver-

gence behavior is observed for other molecules and other basis

sets, as illustrated in Figures 4 and 5. Even though more inexact

Newton iterations may be required to reach convergence when

a large percentage of elements of D̂ðT ðkÞÞ are set to zero, the

total number of floating point operations performed in the

amplitudes update procedure may decrease significantly.

We point out that the percentage of nonzero elements (z)

that should be retained depends on the required accuracy.

When a highly accurate solution is required, z can still be set

to a relatively small value in the early iterations without affect-

ing the convergence rate because in these earlier iterations,

R(Tk) is relatively large even if evaluated exactly. However,

when R(T(k)) becomes small, z may need to be increased to

ensure that sparsification does not introduce too large an error

in the evaluation of R(T(k)). Figure 6 shows that with the error

tolerance set to 10212, the convergence of the sparsified algo-

rithm is relatively insensitive to the sparsity level (z) in the first

20 iterations. However, as the approximation approaches the

exact solution (indicated by the residual error going below

1026 or 1028), keeping z at a small value (e.g., 7.5 or 12%)

may delay convergence.

Assuming that the number of operations performed in our

sparse algorithm is proportional to

pðkÞ5
cðkÞ

c
; (24)

one can quantify the total amount of computational work by

the product of the number of iterations taken (K) and the

average number of p. This product can be viewed as an

Figure 6. Convergence of CCD equations for O3 at the equilibrium geome-

try using various levels of sparsification z and tight threshold 10212. The

cc-pVTZ basis set was employed. By sparsifying the amplitude correction

to approximate solutions to the CC amplitude equations, we can signifi-

cantly reduce the number of operations in the tensor contraction per-

formed in the inexact Newton algorithm. We can maintain nearly the same

convergence rate even when roughly 90% of nonzero elements in the

amplitude correction are set to zero (i.e., z 5 10%).

Table 2. Convergence of the CCD equations for various sparsity levels z

in the amplitude correction and the overall cost of the calculation meas-

ured by the effective number of the full (nonsparse) CCD iteration, Keff.

System Basis set (no/nv) z K p Keff

LiF cc-pVTZ (6/54) 1.000 45 1.00 45.0

0.090 45 0.16 7.2

0.024 157 0.05 7.9

LiF cc-pVQZ (6/104) 1.000 54 1.00 54.0

0.071 54 0.11 5.9

0.024 133 0.04 5.3

O3 cc-pVDZ (12/30) 1.000 28 1.00 28.0

0.114 31 0.27 8.4

0.073 42 0.19 8.0

0.022 126 0.08 10.1

0.018 157 0.07 11.0

O3 cc-pVTZ (12/78) 1.000 25 1.00 25.0

0.104 28 0.20 5.6

0.069 39 0.14 5.5

0.024 105 0.05 5.3

0.017 145 0.04 5.8

O3 aug-cc-pVTZ (12/126) 1.000 26 1.00 26.0

0.105 27 0.18 4.9

0.078 35 0.13 4.6

0.041 64 0.07 4.5

0.018 141 0.03 4.2

O3 cc-pVQZ (12/153) 1.000 24 1.00 24.0

0.107 26 0.17 4.4

0.084 30 0.14 4.2

0.032 75 0.05 3.8

0.022 107 0.04 4.3

The convergence threshold is 1027.

Table 3. Convergence of the CCD equations for various sparsity levels z

in the amplitude correction and the overall cost of the calculation meas-

ured by the effective number of the full (nonsparse) CCD iteration, Keff.

System Basis set (no/nv) z K p Keff

Pentane cc-pVDZ (21/109) 1.000 20 1.00 20.0

0.105 38 0.21 8.0

0.075 52 0.16 8.3

0.027 136 0.07 9.5

Pentane aug-cc-pVDZ (21/202) 1.000 21 1.00 21.0

0.120 35 0.21 7.4

0.083 49 0.15 7.4

0.053 75 0.09 6.8

Alanine cc-pVDZ (24/95) 1.000 71 1.00 71.0

0.085 64 0.19 12.2

0.044 118 0.11 13.0

0.025 211 0.07 14.8

Asparagine cc-pVDZ (35/131) 1.000 34 1.00 34.0

0.060 87 0.14 12.2

0.029 171 0.08 13.7

The amplitude convergence threshold is 1027.
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effective iteration number Keff associated with an inexact New-

ton iteration without sparsification.

Tables 2–4, compare the convergence behavior and the

effective cost of the inexact Newton iteration with sparsified

correction as a function of the parameter z, which measures

the average number of nonzero elements kept in D̂ðT ðkÞÞ.
We observe that as z decreases, the number of iterations K

required to reach convergence increases. However, when z is

not too small, the increase in K is less rapid than the decrease in

z. As a result, the total cost of the inexact Newton iteration

measured in terms of the number of effective nonsparse inexact

Newton iterations, Keff, is smallest for z 0.1. A further decrease of

z leads to a rapid growth of K, which overweight the drop in p.

As evidenced by Tables 2 and 3 (for O3 and pentane), dif-

fuse basis functions, which often spoil the performance of

local CC methods, do not affect the behavior of our algorithm.

The DIIS algorithm is often used in CC calculations to acceler-

ate convergence. With DIIS, the number of inexact Newton iter-

ations required to reach convergence may be reduced. For

example, for the asparagine example, the inexact Newton itera-

tion converges in 34 iterations without DIIS. The use of DIIS

reduces the number of iterations to 18. Similarly, for porphine

in the cc-pVDZ basis, 46 inexact Newton iterations are required

to reach convergence without DIIS. The use of DIIS reduces the

number of iterations to 21. However, in terms of the total num-

ber of floating point operations, our algorithm still has a lower

cost. We can measure the cost as the number of effective itera-

tions with no sparsification, Keff. Using this metric, asparagine

requires Keff 5 12 iterations to converge when the sparsity level

is kept at z 5 6%, to be compared with 18 iterations when

employing DIIS. Porphine requires only Keff 5 6 effective itera-

tions when the sparsity level is kept at z 5 6.3%, which is signifi-

cantly lower than the 21 iterations required by DIIS. It should

be possible to combine the sparse update algorithm with DIIS,

however, more work is required to understand the tradeoff

between sparsity and the convergence rate in such a scheme.

Conclusion

We presented the algorithm for reducing the computational

work involved in CC calculations by sparsifying the amplitude

correction within the CC amplitude update procedure. We pro-

vided a theoretical justification for this approach, which is

based on the convergence theory of inexact Newton itera-

tions. We demonstrated by numerical examples that, in the

simplest case of the CCD equations, we can sparsify the ampli-

tude correction by setting roughly 90% nonzero elements to

zeros on average with only minor effects on convergence of

the inexact Newton iterations. As we set more nonzero ele-

ments of the amplitude correction to zeros, more inexact New-

ton iterations are required to reach convergence. However, up

to a certain sparsity level (often between 5 and 8%), the

increase in the number of iterations is less rapid than the

decrease in the number of nonzero elements in the amplitude

correction, resulting in the further reduction in the overall cost

of the inexact Newton iteration which we measured by an

effective number of full inexact Newton iteration, Keff. We

showed that Keff, hence the total number of floating point

operations, in an inexact Newton procedure can be reduced

by 70–90% when sparsification is used.

In practice, the overall efficiency of the algorithm depends

on the availability of an efficient sparse tensor contraction

library, which we currently do not have. When a sparse storage

format is used to store the sparse amplitude correction, the

indirect addressing required in a sparse tensor contraction is

likely to introduce an overhead relative to dense tensor con-

tractions. The overhead is expected to be machine dependent.

More benchmarks are required to evaluate overall savings in

the floating point operations in an inexact Newton with sparsi-

fied correction amplitudes. In addition, to make use of sparsi-

fied amplitude correction in the residual function evaluation,

unlike original CCD implementation we need to store addi-

tional intermediate tensors of size Oðn2
o � n2

vÞ.
The present sparsification scheme sets many nonzeros ele-

ments in R(T(k)) to zero after they are computed, which is, of

course, wasteful. It would be more efficient to predict which

nonzero elements will be set to zero, and to only compute

those elements that are to be retained in the next iteration.

This scheme will further reduce the number of floating opera-

tions in the function evaluation. However, we found that the

nonzero elements to be set to zero by our algorithm vary

from one iteration to another. We are currently investigating

whether it is possible to develop a strategy to predict the

location of these sparsifiable elements.

Finally, we note that similar sparsification techniques have

successfully been used in the context of SCF calculations for

the purpose of increasing the sparsity of two-electron integrals

and thus reducing work involved in the construction of the

Fock matrix.[59,60] Combined with the dynamic thresholding,

the sparsification in SCF is implemented in most modern

quantum chemistry packages. This work presented the algo-

rithmic and numerical basis for exploiting these ideas within

the CC hierarchy of methods.
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Table 4. Convergence of the CCD equations for various sparsity levels z

in the amplitude correction and the overall cost of the calculation meas-

ured by the effective number of the full (nonsparse) CCD iteration, Keff.

System Basis set (no/nv) z K p Keff

Dodecane cc-pVDZ (49/249) 1.000 20 1.00 20.0

0.119 24 0.24 5.8

0.067 39 0.14 5.5

Dodecane 6-311G (49/185) 1.000 22 1.00 22.0

0.113 25 0.25 6.3

0.051 47 0.12 5.6

Porphine 6-31G (81/163) 1.000 36 1.00 36.0

0.094 34 0.25 8.5

0.089 36 0.24 8.6

Porphine cc-pVDZ (81/325) 1.000 46 1.00 46.0

0.063 45 0.14 6.3

The convergence threshold is 1027.
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