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Small doped 3He clusters: A systematic quantum chemistry approach
to fermionic nuclear wave functions and energies
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A novel approach for calculating nuclear wave functions and energies of3He clusters doped with an
atomic or molecular impurity is developed. It adopts the systematic and well developed
methodology of quantum chemistry employing an analogy between electrons bound by Coulomb
forces to the nuclei and fermionic3He atoms clustered around a dopant species. The differences
primarily concern the different shapes of the helium–helium and helium–impurity potentials and the
larger mass of the3He atom, as compared to electronic structure problems. A new integral evaluation
procedure is outlined, as well as the necessary modifications to electronic structure codes. Tests
against numerically exact calculations for Imp–3He ~Imp5Ne, Ar, Kr, Xe, and SF6! complexes
show that a modest set of 15 basis functions provides accurate and converged results. Calculations
for the lowest triplet state of the SF6~

3He!2 cluster, where fermionic statistics comes into play in the
orbital part of the helium nuclear wave function, are presented. The triplet state is bound by 22
mhartree with respect to dissociation into3He1SF6–3He. The applicability of the new method to
larger systems is discussed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1409355#
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I. INTRODUCTION

Helium possesses two stable isotopes—4He and 3He.
The large amount of experimental and theoretical stud
concerning pure or doped nanodroplets formed by boso
4He has been reviewed recently, e.g., in the focus article
Kwon et al.1 In that paper it is mentioned, within a prognos
for future research directions, that the behavior of molecu
solvated in clusters of fermionic3He is ‘‘of considerable in-
terest.’’ Indeed,3He clusters differ significantly from thos
composed of the4He isotope due to the lower mass a
particularly due to the fermionic statistics of the former sy
tems. Most notably, while4He nanodroplets formed at 0.3
K are superfluid, those containing3He, even though formed
at a lower temperature of 0.15 K, do not exhib
superfluidity.2,3 Thus, these systems represent a unique la
ratory for studying solvation inbosonic and superfluid
versusfermionic and non-superfluidquantum solvents.

Pure3He clusters are inherently difficult to prepare. Th
is due to the fact that, unlike the case of4He, the dimer and
even larger aggregates are not bound~the smallest bound3He
cluster is estimated to have 29–35 atoms4–6!. Thus, it is vir-
tually impossible to obtain these clusters by condensatio
a supersonic jet. Nevertheless, numerous theoretical stu
have addressed questions concerning the structure and s
ity of pure 3He clusters containing tens to hundreds
atoms.4–12 Different approaches ranging from variation
Monte Carlo11 to local,6,12 and nonlocal5 density functional

a!Electronic mail: jungwirt@jh-inst.cas.cz
b!Electronic mail: krylov@usc.edu
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methods, and to a configuration interaction with Jastrow-ty
short-range correlations4,7 have been applied to fermionic he
lium clusters, the central question being the existence o
shell structure and magic numbers.

A practical way of experimentally preparing3He clusters
is to allow them to condense, after supersonic expansion
the vacuum, at an atomic or molecular impurity, as in rec
experiments on a single OCS or SF6 molecule embedded in
pure 3He or in mixed 3He–4He clusters.2,13 In addition to
being the nucleation center, the dopant molecule serves
spectroscopic probe that allows to quantitatively address
classes of questions. The first one concerns the structur
the quantum solvent around the dopant molecule, while
second class concerns perturbations in the solute quan
states~particularly its rotational levels! by solvation.2 In di-
rect connection with the above experiments, calculations
ploying the finite-range density functional method have be
applied to pure3He and mixed3He–4He clusters doped with
SF6 or xenon.14 These calculations explored the structure
the solvation shells, showing~in agreement with
experiment2! that 4He tends to replace3He in the vicinity of
the dopant species.

An accurate description of pure or doped fermionic3He
clusters is a major methodological challenge. While diffusi
and path integral Monte Carlo methods represent the st
of-the-art for bosonic4He nanodroplets,1 extension of these
techniques to fermionic systems is highly nontrivial due
the notorious sign problem occuring for wave functions p
sessing a nodal structure.11,15 Current implementations of al
ternative approaches based on density functional theory5,14,16
4 © 2001 American Institute of Physics
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or on Slater determinants4,7 involve to a certain extent em
pirical ad hoc assumptions, e.g., in the parameterization
the density functional, in the functional form of orbitals com
posing the Slater determinants, or of the Jastrow term.

The principal goal of the present study is to develop
systematic first principle approach to calculations of
ground and excited nuclear wave functions and energie
doped 3He clusters. The basic idea is to employ the w
developed machinery ofab initio quantum chemistry17,18ex-
ploiting the analogies between~i! the two fermions, i.e., an
electron and a3He atom; and~ii ! the nuclei in electronic
structure problems and a dopant atom or molecule in
present systems, both of which representing sources of
external potential. As the first application of the method,
question abouthigh-spin, i.e., triplet in the case of two3He
atoms, states stability is addressed. We have found tha
lowest triplet state of SF6–~3He!2 is bound by 22mhartree
with respect to dissociation into3He1SF6–3He.

In the following section the novel theoretical approach
outlined. In Sec. III, results for small3He clusters doped with
heavier rare gas atoms and the SF6 molecule are presente
and discussed. Finally, Sec. IV contains concluding rema

II. THEORETICAL APPROACH

As mentioned in the previous section, the present th
retical approach is based on similarities between electro
structure problems and many-body nuclear wave function
doped fermionic3He clusters. Let us explore in more deta
this analogy. Since both electrons and3He atoms are fermi-
ons, the whole formalism ofab initio electronic structure
theory17,18 can be adopted in a relatively straightforwa
way, and one can follow a well established hierarchy of
proximations to the exact wave function. The series of wa
functions of increasing complexity19 typically start from the
mean-field Hartree–Fock solution, and proceed to correla
approaches. One of the keys to the success of post-Hart
Fock methods, such as Møller–Plesset perturbation serie
coupled clusters, is the fact that the mean-field Hartree–F
solution is usually already a very good first approximatio
This in turn is caused by the presence of a strong exte
force exerted by the nuclei, which contributes to the o
particle part of the total Hamiltonian. In pure3He nanodrop-
lets there is no such external field and, consequen
Hartree–Fock theory fails to describe the binding. Howev
in doped clusters, which are at present the only spectrosc
cally accessible systems of this type, an external field is
ated by the dopant atom or molecule. Since for any dop
species the solute–helium interaction is stronger than
between helium atoms, this field is relatively strong, sugg
ing that the mean-field approach should be a reasonable s
ing approximation. Moreover, all closed shell atoms a
molecules tend to solvate in the center of the heli
nanodroplet,1,13 thus creating a very good analogy to a ce
tral nucleus surrounded by electrons. To summarize at
point, in the novel approach presented in this paper, the3He
atoms surrounding an impurity are treated in a similar way
electrons around a nucleus in electronic structure calc
tions.
Downloaded 28 Nov 2001 to 128.125.187.147. Redistribution subject to 
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Clearly, despite the similarities, there are also nota
differences between an electron and a3He atom, which have
to be accounted for. First comes the question of the valid
of the Born–Oppenheimer separation between electronic
nuclear motions as compared to those of the helium a
and the impurity in the present case. Although the heavy
light particle mass ratio is less favorable in the present s
tems, the Born–Oppenheimer approximation has been
cessfully applied to 3He clusters doped with SF6 or
xenon.14,16 We demonstrate in the next section that accur
results are obtained if the atomic mass of the impurity is
least an order of magnitude larger than that of3He ~note that
all the experimental systems studied so far fall into this c
egory!. For lighter impurities, the Born–Oppenheimer a
proximation is less satisfactory, but as we show in Sec. II
simple diagonal nonadiabatic correction20 can to a large ex-
tent rectify the problem.

Another major difference between the present probl
and that of electronic structure lies in the interaction pot
tial. While in the latter case strong Coulomb interactio
come into play, weak van der Waals forces cause binding
the former case. Also, while the electron–electron interact
is always repulsive and electron–nucleus interaction is
ways attractive, both helium–helium and helium–impur
potentials exhibit strong repulsion at short separations
weak attraction at larger separations. This has direct impl
tions to the structural and energetic properties of the pre
systems, concerning, for example, closures of quantum sh
and occurrence of magic-number cluster sizes.

From a more technical point of view, several modific
tions of theab initio codes have to be implemented befo
their application to doped3He clusters. Beyond the trivia
fact that the mass of the fermionic particles has to be
creased appropriately, more elaborate changes concern
set construction and evaluation of integrals. To represent
3He nuclear orbitals~i.e., one-particle wave functions!, we
have employed, as in most electronic structure calculatio
an expansion over Gaussian basis functions. These Gaus
are centered at the dopant moiety. Since3He nuclear wave
functions in doped nanodroplets are expected to have a ra
diffuse character and a much smaller spatial separation
tween quantum shells than electrons in atoms, we have
structed the basis set following the standard procedure
diffuse basis sets generation inab initio calculations.
Namely, we have used an even-tempered sequence ofs and
p functions with thenth exponentan given by a geometric
series,21 an5a1 /gn21. Therefore, for each angular mome
tum present in the basis, there are two adjustable parame
a1 andg. We have obtained the values of the largest ex
nenta1 and the geometric factorg by optimizing the energy
of the Imp–3He complex for the series Imp5Ne, Ar, Kr, Xe,
and SF6. It is satisfying that~i! a single set of parameter
works equally well for all rare gas impurities~for SF6 a
smaller value of the largest exponent has been employ!;
and ~ii ! no more than 15s functions are necessary to obta
converged energies. These energies differ by less than
~less than 5% in the case of the SF6 dopant! from the numeri-
cally exact values, which we have obtained by solving
one-dimensional vibrational Schro¨dinger equation~setting
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the mass of the impurity to infinity! by imaginary time
propagation22 on an equidistant grid of 512 points. Finall
for larger complexes, we have reoptimized the basis set w
respect to the Hartree–Fock energies, which lead only
minor modifications of the above basis sets.

For the Imp–He and He–He interactions we have e
ployed the accurate and widely used HFD-B p
potentials.23–25For the sake of simplicity, we have employe
an isotropic, i.e., spherically averaged, potential for
Imp–He interaction.25 In order to facilitate the evaluation o
integrals, we have expanded the above pair potentials
series of Gaussian functions. We have found it useful to
pand the repulsive and attractive parts of the potentials s
rately. Since the repulsive part of HFD-B-type potentials i
product of a Gaussian and an exponential function, it is p
sible to employ a previously developed accurate expan
of an exponential Slater function into 12 Gaussians.26 The
attractive parts of all potentials are represented accuratel
expansions into 30 even-tempered Gaussians with the la
exponenta1510 a.u.22, and the geometric factorg51.3.
The corresponding coefficients have been obtained by lin
least-square fitting27 to the particular pair potential. By nu
merically exact calculations on the Imp–3He clusters, we
have verified that these expansions do not introduce any
ditional appreciable error into the calculations. Using t
above Gaussian expansion of the nuclear wave functions
interaction potentials, all the overlap, one-particle~i.e., ki-
netic energy and Imp–3He interaction!, and two-particle~i.e.,
3He–3He interaction! integrals can be evaluated anal
tically.28,29

The integral evaluation program was linked to t
coupled-cluster codes of theQ-CHEM electronic structure
program.30 In addition, we have used the input–output
brary and input parser of the PSI electronic struct
program.31 An integral transformation module and a simp
program for self-consistent field calculations have been w
ten using the C11 tensor library for coupled-cluste
calculations.32 Thus, the current version of the program
capable of performing Hartree–Fock, MP2, coupled-clus
with single and double substitutions~CCSD!,33 and
optimized-orbitals coupled-cluster doubles~OO-CCD!33–35

calculations for doped3He clusters. Moreover, configuratio
interaction singles, and equation-of-motion OO-CCD~Ref.
36! calculations can be employed for calculations of the
cited states. Last~but not least! is the capability of carrying
out equation-of-motion spin–flip~EOM-SF! ~Ref. 37! calcu-
lations, which is very useful for heavily-correlated system
Additional details, as well as programmable expressions
integral evaluation, will be provided in a subseque
publication.38

III. RESULTS AND DISCUSSION

As a first benchmark, useful also for basis set optimi
tion, we have performed calculations for five Imp–3He
(Imp5Ne, Ar, Kr, Xe, and SF6) systems. The results ar
summarized in Table I and in Fig. 1. We have found tha
single set of 15 even-tempereds-functions with the larges
exponent of 1.7 a.u.22 and a geometric factor of 1.35 pro
vides accurate and converged results for all four syste
Downloaded 28 Nov 2001 to 128.125.187.147. Redistribution subject to 
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containing a rare gas impurity. For SF6, the best results are
obtained with the same geometric factor but with a mo
diffuse basis, i.e., witha151.3 a.u.22. Table I demonstrates
the very good agreement between the present energies
numerically exact results employing the full mass of the3He
atom ~i.e., assuming infinite mass of the impurity!. We have
found that for SF6 the convergence of the results with th
basis set size is slower than for rare gas dimers. For exam
the difference between the best result with 15 basis functi
and the exact result is 5% for SF6, while for rare gases a
basis set of the same size is capable of reproducing the e
value within 1% error. This is because the stronger SF6–3He
interaction results in a more localized nuclear wave functi
The performance of the impurity-centered Gaussian basis
becomes slightly inferior as the wave function becomes m
localized. Note also that the energies in Table I correspon
the specific choices of the He–He and Imp–He potenti
and marginally different results would be obtained with oth
potentials.39,40

Table I also demonstrates how the present results, wh
are obtained within the Born-Oppenheimer approximat
~i.e., assuming an infinite mass of the impurity!, deviate from
the physically more correct values calculated using the
duced mass of the dimer system. While this deviat
reaches as much as 20% for neon, it is only 6% for arg
and further drops to only 3%, 2% and 1% for krypton, x
non, and SF6, respectively. We conclude that for impuritie
with mass at least ten times larger than that of the3He atom,
the Born–Oppenheimer separation is justified. Moreover
shown in the last column in Table I, the energy is almo
completely rectified by a simple diagonal nonadiaba
correction,20

ENA5EHe
kin3~m/M !, ~1!

whereEHe
kin is the kinetic energy of helium, andm andM are

the masses of helium and the impurity, respectively. It
unclear how to extend Eq.~1! for larger systems, however, a
can be seen from the dimer results, Born–Oppenheimer
proximation is sufficiently accurate to provide a reliable i
formation about energy levels.

Figure 1 compares the radial3He wave functions for the
five systems under investigation with numerically exact

TABLE I. Total energies~mhartree! of Imp–3He ~Imp5Ne, Ar, Kr, Xe, and
SF6! complexes. Finite basis set calculations~15 Gaussians! versus numeri-
cally exact values employing the full3He mass or the reduced mass of th
system. The last column shows the exact energies calculated with full3He
mass, corrected for the diagonal nonadiabatic term.

System E15s
a Eexact

a Eexact
b Eexact

b,c

Ne–3He 210.19 210.20 28.05 27.90
Ar–3He 227.28 227.32 225.74 225.69
Kr–3He 229.30 229.59 228.82 228.80
Xe–3He 229.32 229.41 228.95 228.94
SF6–3He 282.40 286.59 285.82 286.59

aFull mass.
bReduced mass.
cFull 3He mass calculations corrected for the diagonal nonadiabatic t
@see Eq.~1!#.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Nuclear wave functions for~a! Ne–3He, ~b! Ar–3He, ~c! Kr–3He,
~d! Xe–3He, and~e! SF6–3He clusters. Comparison of the results obtain
using a finite basis set of 15 Gaussians against numerically exact
dimensional vibrational calculations~employing either the full3He mass or
the reduced mass of the system! is shown. A multiplicative factor of 4pr 2 is
used for the former wavefunctions in order to unify normalization.
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sults employing either the full3He mass or the reduced ma
of the complex. We see again that the finite Gaussian b
set is capable of providing accurate wave functions. Mo
over, the accuracy of Born–Oppenheimer approximation
proves with increasing mass of the impurity.

The next larger cluster is the Imp–~3He!2 complex,
where already both the He–He interaction and the fermio
statistics start to play a role. Here, we present calculations
the SF6 impurity which is most relevant from the experime
tal point of view. For the sake of simplicity, we have em
Downloaded 28 Nov 2001 to 128.125.187.147. Redistribution subject to 
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ployed an isotropic, spherically averaged SF6–He interaction
potential.25

A complex with two3He atoms can be in a singlet or i
a triplet state. In the former case, the proper quantum sta
tics is being taken care of via antisymmetrization of the s
part of the nuclear wave function. Therefore, the spatial
bital part, which is symmetric, is not influenced by the fe
mionic versus bosonic nature of helium isotopes. The trip
state is, however, more interesting, since it can only
formed by fermionic3He atoms. In this case, the spin part
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



or
g

y

io
re
s

n
o

th
iz
de
ic

iz

ct
is
le

y

tio

e

a
u-
–
ar
c
le

ex

er
nt
the
b-
they
ion

of
ate
s.

to
r

gy

c-
-
on

let
te

ote
nd

ol-

ons
ve
-
ms

der
oi-
c-

re
ct

cale
ry
er
ore
od,

to

e.

10218 J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 P. Jungwirth and A. I. Krylov
the wave function is symmetric and, therefore, it is the
bital part which has to be antisymmetrized. In the followin
we discuss in detail the triplet state of the SF6~

3He!2 cluster.
Table II shows the total energies of the 1s and 1p states

of the SF6–3He dimer, and of the triplet 1s1p state of the
SF6~

3He!2 calculated by the Hartree–Fock method emplo
ing basis sets of increasing size.DE5E1s1p

HF 2E1s is the sta-
bilization energy of the dimer with respect to the SF6–3He
and 3He fragments. Since the hard-core He-He repuls
leads to a more diffuse wave function of the trimer compa
with the dimer, it is necessary to employ a more diffuse ba
set. Moreover, thep-functions are more diffuse tha
s-functions since they describe rotationally excited states
the dimer. Being more diffuse, i.e., more delocalized,
p-functions exhibit faster convergence with the basis set s
We have found that the following set of parameters provi
a balanced description of both one-particle and two-part
wave functionsa1

s51.4, a1
p51.2, andgs5gp51.45.

As shown in Table II, the convergence with basis set s
is fast. Even though the converged values of theabsolute
energies of the one-particle orbitals~i.e., states of the
SF6–3He dimer! are still 10mhartree higher than the exa
energies~see Table I!, the error in the stabilization energy
much smaller due to cancellation of errors. For examp
moving from the 13s11p to the 15s13p basis, the 3mhartree
change in one-particle energy is largely compensated b
similar decrease of Hartree–Fock energy of 4mhartree, re-
sulting in an overall change of only 1.2mhartree in stabili-
zation energy. Therefore, we can estimate the stabiliza
energy of a triplet to be equal to 22mhartree.

The inclusion of He–He correlation will further stabiliz
the dimer. However, in the case of two3He atoms with the
same spin, the correlation effects turn out to be very sm
i.e., about 1mhartree. This is clearly due to the Pauli excl
sion principle~which is correctly described at the Hartree
Fock level! keeping the two fermions of the same spin ap
from each other. Therefore, the effect of correlation is mu
smaller for the triplet state than for the corresponding sing
state ~see Ref. 37 for analogous electronic structure

TABLE II. Total energies~mhartree! of the 1s and 1p states of the SF6–3He
dimer, and of the triplet 1s1p state of SF6~

3He!2 calculated by self-
consistent field.DE is the stabilization energy of the dimer with respect
SF6–3He13He.

Basis seta E1s(SF6–3He) E1p(SF6–3He) E1s1p
HF (SF6–~3He!2) DE

12s10p 270.2 269.5 282.4 12.2
13s10p 273.8 269.5 291.6 17.9
14s10p 275.7 269.5 294.6 18.9
15s10p 276.7 269.5 296.2 19.5

13s11p 273.8 272.6 295.2 21.4
14s11p 275.8 272.6 297.1 21.4
15s11p 276.7 272.6 298.2 21.5

13s12p 273.8 273.4 296.0 22.2
14s12p 275.8 273.4 297.5 21.7
15s12p 276.7 273.4 298.4 21.7

15s13p 276.7 273.5 299.3 22.6

aa1
s51.4, a1

p51.2, gs5gp51.45, 12 frozen virtual orbitals.
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amples!. For the singlet state, however, as well as for larg
clusters, correlation will certainly play a more promine
role. However, a promising strategy emerges from
present calculations; similarly to electronic structure pro
lems, high-spin states are less correlated, and therefore
may serve as a good starting point for including correlat
via the spin–flip method.37

It is interesting to compare the Hartree–Fock energy
299 mhartree of the triplet state of the cluster to an estim
derived from the model of non-interacting helium atom
Within the latter assumption, the energy of the SF6~

3He!2

cluster is simply the sum of energies corresponding
SF6–3He(1s) and SF6–3He(2p) complexes, which are, fo
the 15s13p basis, equal to277 and274 mhartree, respec-
tively ~see Table II!. This leads to an estimate of the ener
of the complex of2151 mhartree, which is 52mhartree be-
low the energy calculated from the two-particle wave fun
tion. The energy penalty of 52mhartree is due to the hard
core He–He repulsion and quantum wave functi
delocalization.

Figure 2 depicts the Hartree–Fock density of the trip
state of the SF6~

3He!2 cluster. Out of the three degenera
states, the one corresponding to the 1s1py configuration is
shown. The density reflects the 1s1p structure of the triplet
state, i.e., the superposition of s- and p-type orbitals. N
the delocalized character of the helium wave function arou
the central SF6 dopant, and the corresponding excluded v
ume.

The present calculations represent the first applicati
of a novel methodology for the calculation of nuclear wa
functions of doped3He clusters. In future work, the follow
ing lines of research will be pursued. The size of the syste
will be increased up to several tens of helium atoms, in or
to complete the first solvation shell around the dopant m
ety, which plays a dominant role in solute–solvent intera
tions. Drawing from the analogy with electronic structu
calculations, this is quite realistic. In particular, we expe
that the number of necessary basis functions should s
mildly with the number of helium atoms, due to the ve
diffuse character of the nuclear wave functions. In larg
clusters, correlation effects are expected to play a m
prominent role. The recently proposed EOM-SF meth

FIG. 2. 3He density for the triplet 1s1py state of SF6~
3He!2 shown in theXY

plane (Z50). The SF6 molecule is at the origin of the coordinate fram
Note that the overall density is a superposition ofs- andp-components.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which uses a less correlated high-spin reference and tr
final ~low-spin! states as spin-flipping excitations,37 is ex-
pected to be an appropriate strategy here. We also pla
implement nonisotropic helium-impurity interaction pote
tials which are more appropriate for molecular impuritie
Since in the present model the impurity affects directly o
the external potential, this is a relatively easy modificati
Future work will also focus on the interpretation of the ro
tional spectrum of the dopant molecule in terms of exci
nuclear states of the surrounding3He atoms. Finally, we note
that the present methodology can also be directly applie
other fermionic quantum solvents, such as HD molecu
Possibly, it can also be extended to bosonic quantum sys
like 4He and molecular hydrogen nanodroplets.

IV. CONCLUSIONS

This paper presents the first calculations of nuclear w
functions and energies of doped3He clusters using a new
approach based on a systematic quantum chemistry met
ology. In this approach, the analogy between the doped3He
cluster and an atomic system is exploited; fermionic heli
atoms are treated as electrons, and the dopant acts as a s
of external potential, similarly to nuclei in atoms.

We have adopted the well developed machinary of qu
tum chemistry for solving exactly or approximately the co
responding Schro¨dinger equation. A many-particle fermioni
wave function is represented via an expansion over a ma
particle basis set constructed from Slater determina
Spin–orbitals are expanded over a finite set of Gaussian
sis functions centered at the impurity. By using differe
strategies of generating many-particle basis set a serie
systematic approximations to the exact wave functions is
troduced.

A major difference between atomic electronic structu
calculations and those for the doped3He clusters is in the
different nature of the one- and two-body interactions
helium–dopant and helium–helium, respectively. Thus,
one-particle basis set construction and the integral evalua
algorithm are very different from those employed in ele
tronic structure calculations. The equations for many-bo
wave functions, however, are identical for fermionic heliu
clusters and for electrons in molecular systems, which
ables us to build upon the electronic structure formalism
computer codes.

Benchmark calculations are performed for a series
Imp–3He ~Imp5Ne, Ar, Kr, Xe, and SF6! clusters. Results
for the triplet state of the SF6~

3He!2 cluster, where the fermi-
onic nature of the quantum solvent already has to be ta
into account, are presented. Future applications incl
larger systems and anisotropic molecular impurities.
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