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A spin-complete version of the spin-flip approach to bond breaking:
What is the impact of obtaining spin eigenfunctions?
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Spin-complete versions of the spin-flip configuration-interaction-singles~SF-CIS! approach have
been investigated to determine the impact of making the wave function an eigenfunction ofŜ2. The
method has been implemented within an extended restricted active space configuration interaction
formalism. Spin-complete results are presented for excitation energies, equilibrium geometries, and
potential energy curves for dissociation of a single bond in several small molecules. The effect of
different orbital choices has also been investigated. The spin-complete results are compared both to
results using the original spin-flip method and to more computationally expensive benchmarks.
Using spin eigenfunctions dramatically improves upon the accuracy of the SF-CIS
approach. ©2003 American Institute of Physics.@DOI: 10.1063/1.1568735#
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I. INTRODUCTION

The rapid advances inab initio methods and compute
hardware have made accessible highly accurate electr
structure calculations.1–3 However, current methods are st
unable to efficiently describe many chemically importa
processes, including bond breaking. In Hartree–Fock the
the ‘‘independent particle’’ model neglects the fact that el
trons instantaneously respond to the position of the o
electrons, i.e., that the motion of electrons is correlat
Thus, correlated methods such as many-body perturba
theory and coupled-cluster theory are required to obtain
curate results.4 As bonds are broken, electrons become se
rated, and one would expect that the correlation energy~de-
fined as the difference between the Hartree–Fock energy
the exact nonrelativistic energy! should decrease. One ob
serves, however, that the correlation energy actually
creases as bonds are broken. This happens because th
relation energy at the dissociation limit is dominated not
the short-rangedynamical correlationof the electrons, but
rather by contributions from near-degeneracies of electro
configurations, termednondynamical correlation. The
Hartree–Fock model and post Hartree–Fock single refere
theories assume that the electronic wave function of the
tem can be adequately described by a single determin
However, when this is not the case then the correlation
ergy also includes the error due to this single-reference
proximation. While being valid for many molecules at the
equilibrium geometries, this assumption breaks down at
dissociation limit. For breaking a single bond described
orbital fB the system is typically well described by a sing
reference near equilibrium, i.e.,uCDfBafBb&, whereCD

a!Electronic mail: sherrill@chemistry.gatech.edu
9080021-9606/2003/118(20)/9084/11/$20.00
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represents those orbitals which remain doubly occup
throughout the dissociation. However, near the dissocia
limit the method must take into account at least two deg
erate or nearly degenerate configurations, i.e.,uCDfBafBb&
and uCDfB* afB* b&.

Several solutions to the nondynamical correlation pro
lem have been suggested. For example, a zeroth-order w
function which is appropriate for bond breaking can be o
tained by optimizing orbitals for a linear combination
near-degenerate Slater determinants, as in multiconfig
tional self-consistent-field~MCSCF! and complete active
space SCF ~CASSCF! methods5–7 ~for an alternative
coupled-cluster based active space approach see Ref. 8!. To
achieve quantitative accuracy, such zeroth-order wave fu
tions should be augmented by corrections for dynam
electron correlation. Unfortunately, the flexibility of th
above-mentioned methods and their ability to achieve h
accuracy come together with high computational costs
rather complex underlying formalisms. Moreover, many
these models are not size-consistent.

Recently, Krylov has introduced an alternative soluti
to the nondynamical correlation problem, the spin-flip~SF!
approach.9–12 The SF method is formulated within an equ
tion of motion ~EOM! formalism in which theufBafB* a&
component of the triplet state is used as a reference,
which effects due to dynamical and nondynamical corre
tion are much smaller.9 The final wave functions are the
sought in the basis of determinants conserving the numbe
electrons but exerting ana→b spin-flip on one electron.
The SF method thus describes themultireferencenature of
the wave function using a single-reference formalism. Ot
attractive features of this approach include its multistate
ture ~i.e., SF is capable of describing several states in
4 © 2003 American Institute of Physics
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9085J. Chem. Phys., Vol. 118, No. 20, 22 May 2003 Spin-flip approach to bond breaking
calculation!, and unlike traditional configuration interactio
singles and doubles~CISD!, the method is size-consistent
that excitation energies on one fragment are not affected
the presence of other, noninteracting fragments.10 However,
the SF solutions are not pure spin eigenfunctions. By a
trarily choosing anaa reference from the three degenera
components of the triplet state, a slight imbalance occur
the treatment of degenerate spin configurations in the fi
wave function. Since all the leading determinants are pre
in the SF subspace together with their spin-coupled coun
parts, the resulting spin contamination of target wave fu
tions is rather small~although it can be large for excite
states—see the following!. In other words, the spin contam
nation of the SF wave functions is due to the spin polari
tion of the SF wave functions, rather than spin-symme
breaking which single-reference methods often exhibit wh
a single-determinantal description is not appropriate.13 De-
spite the above-mentioned imbalance, the simplest
method, the SF configuration-interaction-singles~SF-CIS!
approach~also referred to as SF-SCF! performed well on
several test cases9 and was greatly improved once augment
with perturbative corrections to include dynamical corre
tion as in SF-CIS~D!,11 or when all double excitations wer
explicitly included as in SF-CISD.10 The success of the S
approach leads to questions concerning the improvement
might be obtained by using spin-complete wave functio
This work presents a spin-complete variant of the SF-C
model, denoted SC-SF-CIS. Section II discusses the the
ical approach and describes the implementation. Results
excitation energies, equilibrium geometries, and potential
ergy curves for dissociation of a single bond in several sm
molecules are given in Sec. III and our concluding rema
are given in Sec. IV.

II. THEORETICAL APPROACH

A. Spin-completeness of the SF-CIS wave functions:
Theory and implementation

For open-shell electron configurations, several deter
nants are required to form an eigenfunction ofŜ2. For a
simple example, consider the case of two electrons in
orbitals. Of the fourMs50 determinants, two are of a close
shell type, i.e.,uf1af1b& and uf2af2b&. When the same
set of spatial orbitals is employed for thea and b spin-
orbitals, the closed-shell determinants are spin pure, i.e.,
are eigenfunctions of both theŜz and theŜ2 operators. The
open-shell determinants,uf1af2b& and uf1bf2a&, are not
eigenfunctions ofŜ2. However, they do form what we wil
call a spin-coupled set, and singlet and tripletŜ2 eigenfunc-
tions are obtained by the appropriate linear combination
these determinants, i.e., 221/2(uf1af2b&6uf1bf2a&).
Thus, a CI wave function that includes one of these deter
nants must also include the other if the total wave function
to be a spin eigenfunction.

Turning back to the SF approach, consider the sim
case of four electrons in four spatial orbitals, as in Fig.
Configurations~b! through ~j! result from single SF excita
tions from the reference~a!. Configurations~b! and~c! are of
a closed-shell type~i.e., contain no unpaired electrons! and
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are thus spin eigenfunctions. Open-shell configurations~d!
and ~e! include singly occupied spatial orbitals and are th
not spin eigenfunctions of the system, but do form a ‘‘sp
coupled’’ set and thus can be combined to obtain an eig
function ofŜ2. Configurations~f!–~j! are not spin eigenfunc
tions, and their ‘‘spin-complements’’ cannot be obtained b
single SF excitation from~a!. Thus, a linear combination o
~b!–~j!, i.e., the SF-CIS wave function for this particular sy
tem, is not a spin eigenfunction. The missing sp
complements of~f!–~j! are shown in Fig. 2. These nine de
terminants should be added to the nine SF-CIS determin
from Fig. 1 to achieve spin-completeness. For the case o

FIG. 1. System consisting of four electrons in four orbitals. Configurat
~a! is the triplet reference. Configurations~b!–~j! are produced by single
spin-flipping electronic excitations. Note that~b! and~c! are spin eigenfunc-
tions and that~d! and ~e! form a ‘‘spin-coupled’’ set. However, configura
tions ~f!–~j! are all missing one or more complementary spin configuratio

FIG. 2. Determinants~f!–~j! from Fig. 1 and the corresponding ‘‘spin
complements.’’
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9086 J. Chem. Phys., Vol. 118, No. 20, 22 May 2003 Sears, Sherrill, and Krylov
electrons in six spatial orbitals, the SF-CIS space consist
16 determinants. To form the SC-SF-CIS wave function,
additional determinants are required.

In order to estimate the total number of determinants
the SF-CIS and the SC-SF-CIS subspaces, let us partition
molecularorbital space into three subspaces;~i! a subspace
of O doubly occupied orbitals denoted byO; ~ii ! a subspace
of X singly occupied orbitals denoted byX ~for the triplet
reference,X contains only two molecular orbitals!; and~iii ! a
subspace ofV unoccupied orbitals denoted byV. The choice
of the partitioning is defined by the appropriate high-sp
reference. The total number of electrons is thus equa
2O1X. If there are no symmetry imposed restrictions, t
target SF-CIS subspace contains 2(O1V12)1OV determi-
nants: fourX→X excitations@determinants~b!–~e! from Fig.
1#; 2O and 2V excitations of theO→X and X→V types,
respectively, sinceX52 for the SF reference@determinants
~h!,~i! and ~f!, ~g!#; andOV determinants of theO→V type
@determinant~j!#. The spin-complements from Fig. 2 are fo
mally a restricted subset of double and triple spin-orb
excitations relative to the high-spin triplet reference. The (8)
and (g8) type determinants areX→X,X→V doubles~there
are 2V of these!. Likewise, the (h8) and (i8) type determi-
nants areX→X,O→X doubles~there are 2O of these!. The
(j18), (j28), (j48), and (j58) type determinants areX→X,O
→V doubles (4OV total!. Finally, there areOV triple X
→X,X→X,O→V excitations of the (j38) type. To summa-
rize, the total number of determinants in the SC-SF-CIS
4(O1V11)16OV. Thus, the number of determinants i
cluded in either method isO(OV). For a specific example
the HF molecule in a 6-31G basis, taking symmetry rest
tions into account and with the 1s orbital on fluorine frozen,
requires 17 determinants for SF-CIS and 50 determinants
SC-SF-CIS.

We have implemented the SC-SF-CIS model by mod
ing the restricted active space configuration interact
~RAS-CI! program, DETCI, of C.D.S.14 In the RAS-CI
method,15,16 determinants are selected by partitioning of t
molecular orbitals into several subspaces and then choo
determinants according to the number of electrons allowe
each subspace. As described by Sherrill and Schaefer,16 we
divide the active~nonfrozen! orbitals into four subspaces
labeled I, II, III, and IV. The orbital partitioning is deter
mined by the specific bond to be broken. The bonding orb
fB defines the RAS II subspace, and all other active oc
pied orbitals are placed in RAS I. RAS III contains the co
responding antibonding orbitalfB* , and all remaining virtual
orbitals are placed in RAS IV. In terms of theO, V, andX
subspaces introduced earlier, RAS I and RAS IV corresp
to the O and V subspaces, respectively, while RAS II an
RAS III form together theX subspace.

Once the orbitals have been distributed among th
RAS subspaces, the determinants for the SC-SF-CIS are
sen as follows. A maximum of one excitation is allowed fro
RAS I, a maximum of two electrons are allowed in RAS
~which contains only a single orbital anyway!, and a maxi-
mum of one electron is allowed in RAS IV. A maximum o
two electrons are allowed simultaneously in RAS III a
RAS IV. Finally, if an electron is in RAS IV, then there mu
Downloaded 09 May 2003 to 128.125.104.83. Redistribution subject to A
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be at least one hole in RAS II. These rather complex ru
are necessary to generate exactly the SC-SF-CIS determ
tal subspace, and are different from the usual RAS
procedures.15,16

The above-mentioned scheme for selecting determin
can be used with any type of molecular orbitals, allowing
to investigate the effect of different orbital choices in ad
tion to testing the importance of spin-completeness. T
EOM formulation of the SF models suggests that one emp
orbitals obtained for the high spin reference state@either un-
restricted Hartree–Fock~UHF! or restricted open shel
Hartree–Fock~ROHF! or Brueckner-type, as in spin-flip op
timized orbital coupled-cluster doubles~SF-OD!#. Previous
SF-CIS benchmarks employed~UHF! orbitals for the high-
spin triplet of the appropriate symmetry. In the present wo
we also use high-spin triplet Hartree–Fock orbitals, but th
are obtained in the ROHF procedure~for rigorous spin-
completeness, it is necessary to use the same spatial mo
lar orbitals fora andb spin-orbitals!. We have also tested th
performance of the restricted Hartree–Fock~RHF! orbitals
obtained for the closed-shell singlet wave function, as w
as two-configuration self-consistent-field~TCSCF! orbitals.

Although our CI space is generated in the RAS-
scheme as described earlier, for simplicity we will speak
though the space is generated from a triplet ‘‘reference’’ as
the original SF-CIS procedure. Results were generated u
the lowest triplet state of the given symmetry as a referen
For the bond breaking examples, this reference beco
uCDfBafB* a& as the bond is stretched.

B. Size-consistency of the SC-SF-CIS method

In this section, we discuss the size-consistency of
SC-SF-CIS model, closely following the presentation fro
Ref. 10. We adhere to the terminology used in Refs. 10
17 and use the term size-consistency to refer to the add
separability of the energy in the limit of noninteracting fra
ments:

EAB5EA1EB , ~1!

whereEAB is the energy of a system composed of two no
interacting fragments,A and B, at infinite separation; and
EA , EB are energies of the corresponding fragments. He
we restrict ourselves to the case whenA and B are closed
shell systems. In the following we will show that SC-S
CIS, using an UHF triplet reference, is size-consistent in
sense that the total SF energy is equal to the sum of the
energy of fragmentA and the HF energy of fragmentB.
Therefore, the accuracy of the SF-CI description of the bo
breaking localized at a reaction center in a large molec
would not be affected by molecular size. However, SF-
would fail to describe simultaneous breaking of two bon
even in case of noninteracting bonds.

For excited states described by the SF-CI or SF-
models, the total energy of a target state consists of the
erence energy and the corresponding transition energy. T
Eq. ~1! is satisfied if~i! the reference energy of the compos
system is the sum of the reference energies for fragme
and ~ii ! the transition energy is additive. Condition~i! is
satisfied by any SF-CI model due to size-consistency of
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hartree–Fock model given that the orbitals are obtain
from the Hartree–Fock calculation for the SF reference
terminant. In the following, we prove that the transition e
ergy for the ‘‘excitation’’ localized on fragmentA in the
super-molecule is the same as the transition energy for
fragmentA, i.e., that energies of target states on the fragm
A are not affected by the presence~at infinite distance! of the
fragmentB. Thus, the quality of SF-CI description would n
degrade with the increase of molecular size. However,
SF-CI correlation energy is not additive.

We start by dividing all the determinants into fou
groups;~i! the reference determinant,u0A•0B& or simply u0&;
~ii ! determinants involving excitations localized on fragme
A, uFA•0B& or uA&; ~iii ! determinants involving excitation
localized on fragmentB, u0A•FB& or uB&; ~iv! determinants
that involve excitations of electrons on both fragmen
uFA•FB& or uAB& ~i.e., those which describe simultaneo
excitation of both subsystems or electron transfer betw
them!.

In the SF implementation employing a triplet referenc
the reference determinant is the Hartree–Fock determi
describing theaa component of the reference triplet stat
We assume that the two unpaireda electrons are localized o
fragmentA.18 Thus, u0A& is the Hartree–Fock determinan
for fragmentA in the triplet state, andu0B& is the Hartree–
Fock determinant for fragmentB in thesingletstate. Later in
the discussion, we useu0& and up& to refer to~i! and~ii !–~iv!
determinants, respectively. Whileu0& is the Ms51 determi-
nant, all up& haveMs50, since they are generated by spi
flipping excitations fromu0&.

In the separated limit, the Hamiltonian operator of t
composite system is the sum of those for the individual fr
ments:

Ĥ5ĤA1ĤB . ~2!

As pointed out by Kochet al.,19 the sufficient condition for
size-consistency is a block-diagonal structure of the ma
of the Hamiltonian~2! in the above-described many-electro
basis,20 which the rest of this section proves.

First, all the^0uHup& and ^puHu0& blocks are zero, be
cause the determinantsu0& andup& describe states with differ
ent number ofa andb electrons and, therefore, they do n
interact across the~nonrelativistic! Hamiltonian. Using the
shorthand notationHPQ[^PuHuQ&, other nondiagona
blocks of the matrix of the Hamiltonian~2! are

HAB5^0BuFB&•^FAuĤAu0A&1^0AuFA&•^FBuĤBu0B&, ~3!

HBA5^0AuFA&•^FBuĤBu0B&1^FBu0B&•^0AuĤAuFA&, ~4!

HB,AB5^FBuFB8 &•^0AuĤAuFA&1^0AuFA&•^FBuĤBuFB8 &,
~5!

HA,AB5^0BuFB&•^FAuĤAuFA8 &1^FAuFA8 &•^0BuĤBuFB&.
~6!

Due to the orthogonality, all thê0AuFA& and ^0BuFB&
terms are zero. Moreover, the^0AuĤAuFA& matrix elements
are also zero, sinceu0A& and uFA& have different number o
a andb electrons. However,̂0BuĤBuFB& is not necessarily
Downloaded 09 May 2003 to 128.125.104.83. Redistribution subject to A
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zero, since the fragmentB is in the singlet state. Thus,HAB ,
HBA , and HB,AB blocks are always zero, regardless of t
levels of excitation included in the CI expansion, molecu
orbitals used, and the multiplicity of the reference~as long as
u0& and up& are of differentMs). However, theHA,AB term is
zero only in the particular circumstances. This term redu
to ^FAuFA8 &•^0BuĤBuFB&. In case of the SF-CI model em
ploying a triplet reference and including up toM -tuple ex-
cited determinants, the CI expansion includes excitati
which flip the spin of one electron. Thus, since the deter
nantFA includesat leastone electron excitation, the excita
tion level in the determinantFB does not exceedM21 sub-
stitutions. Therefore, term~6! does not exist for single
excitations. Moreover, for any double excitations the te

^FBuĤBu0B& zeros out because of the Brillouin theorem~if
one employsunrestricted Hartree–Fock triplet orbitals for
the reference determinant!. If the SF-CI expansion include
higher excitations, nonzeroHA,AB terms may appear and vio
late size-consistency.

As discussed in Sec. II A, spin-completeness of the S
CIS method requires adding a selected subset of doubly
triply excited determinants. As shown earlier, for any dou
excitations, theHA,AB terms are zero. Therefore, we shou
consider only triply excited determinants from the SC-S
CIS determinantal subspace, i.e., theX→X,X→X,O→V ex-
citations. Since such triple excitations include excitations
two electrons within the open-shell subspaceX, the corre-
spondingFA includesat leastdouble electron excitation, an
the excitation level inFB is thus restricted to a single sub
stitutions. Thus, for the restricted triple excitations of theX
→X,X→X,O→V type, theHA,AB term is zero. Therefore
size-consistency of the SF-CIS model is not impacted
adding the selected subset of doubly and triply excited de
minants as required by spin-completeness. However, al
the SF-CI models include terms violating size-consisten
when the Brillouin theorem is not satisfied, i.e., in case wh
restrictedtriplet or singlet orbitals are used. In the following
we present a numerical example which demonstrates the
fect of different orbital choices on the size-consistency
excitation energies.

III. RESULTS AND DISCUSSION

We present SC-SF-CIS results for several benchm
molecules and compare the results to the spin-incomp
SF-CIS approach. Using ROHF triplet orbitals allows a cle
comparison of the effects of obtaining spin eigenfunctio
while SC-SF-CIS results using other orbitals facilitate t
analysis of the importance of triplet orbitals to the success
the method.

A. Be

A clear example of the advantages of using sp
complete wave functions is given by the excited states of
atom, which have already been investigated using the
CIS and spin-flip configuration interaction singles a
doubles~SF-CISD! methods.9,10 The total and excitation en
ergies for low-lying states of Be calculated in a 6-31G ba
by different SF models, traditional CISD, and full CI a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Ground state total energies~hartree! and excitation energies~eV! for Be atom using a 6-31G basis set.a

State
SC-SF-CIS

~singlet orbs!
SC-SF-CIS
~triplet orbs! SF-CISb SF-CIS~D!c SF-CISDc CISDc FCIb

1S(1s22s2) 214.584 255 214.584 904 214.584 111 214.597 209 214.613 056 214.613 493 214.613 545
3P(1s22s2pz) 2.102 2.131 2.111 2.432 2.861 2.877 2.862
3P(1s22s2px,y) 2.129 2.132 4.087 4.144 2.867 2.877 2.862
1P(1s22s2pz) 5.938 5.973 6.036 6.254 6.578 6.598 6.577
1P(1s22s2px,y) 5.988 5.977 7.481 7.743 6.586 6.598 6.577
3P(1s22pz2px,y) 7.327 6.982 7.671 7.696 7.669
1D(1s22pz

2) 8.815 8.925 8.94 9.038 8.624 8.637 8.624

aSF methods employ a3P(1s22s2pz) reference.
bReference 9.
cReference 10.
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presented in Table I. If the SF-CIS method is based upo
3P(1s22s2pz) reference, then the (1s22s2px) or
(1s22s2py) components of excited3P or 1P states canno
be described properly, because theu1s22sb2px,ya& determi-
nants are missing. The same holds for the (1s22pz2px) and
(1s22pz2py) components because theu1s22pzb2px,ya& de-
terminants are missing. The SF-CIS roots correspondin
these states are heavily spin-contaminated and yield gre
overestimated excitation energies.9 When all double excita-
tions are explicitly present in the wave function~as in the
SF-CISD model!, the description of these states significan
improves: both spin-contamination and artificial energy sp
tings are considerably reduced at the SF-CISD or SF-
level. As expected, the perturbative account of doubles in
SF-CIS~D! method is not capable of restoring the balan
The SC-SF-CIS model explicitly includes the missing det
minants and provides reasonable predictions of the excita
energies of these components of the lowest-lying1P and3P
states, as demonstrated in Table I. In fact, the artificial sp
tings in the SC-SF-CIS are smaller than those in a m
expensive SF-CISD model. The errors against full CI
fairly large ~about 0.7 eV! but are about what should b
expected for a method containing primarily single excitatio
~errors of 1 eV or more are common for CIS!.21 The
(1s22s2px,y) and (1s22s2pz) components of the lowest1P
and 3P states are not strictly degenerate, because even
spin-complete SC-SF-CIS approach fails to treat the threp
orbitals on an equal footing when it singles out one of th
~here, 2pz) to constitute RAS II. The SC-SF-CIS calculatio
with closed-shell singlet orbitals which have identical en
gies for all three of the 2p orbitals confirms that the failure
to reproduce the exact degeneracy is due to the CI sp
rather than the orbitals. In fact, singlet orbitals yield sligh
larger splittings than triplet orbitals. Overall, the compone
which should be exactly degenerate are artificially split by
more than 0.05 and 0.004 eV with singlet and triplet orbita
respectively. Similar to the lowest3P state, the description o
the (1s22pz2px,y) components of the next-higher3P state is
also considerably improved by the SC-SF-CIS method.
summarize, although the SC-SF-CIS approach is a cons
able improvement in that it describes excited states which
not accessible by SF-CIS, unfortunately it does not sign
cantly improve vertical excitation energies of the sta
present in SF-CIS.

As discussed earlier, the SC-SF-CIS excitation energ
Downloaded 09 May 2003 to 128.125.104.83. Redistribution subject to A
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are rigorously size-consistent only when UHF triplet orbita
are employed, due to the applicability of Brillouin’s theorem
In this case, the quality of SC-SF-CIS is independent of m
lecular size, i.e., excitation energies of Be would not be
fected by a Ne atom located 100 Å away. We use this
ample to investigate the numerical consequences of u
ROHF triplet or RHF singlet orbitals in the SC-SF-CIS ca
culations. The ground state and excitation energies for
with a Ne atom 100 Å away calculated using the same 6-3
basis set are given in Table II. Both RHF orbitals of t
ground state, Be(1S)Ne(1S), and ROHF orbitals of the low-
est triplet state, Be(3P)Ne(1S), have been tested. The exc
tation energies for Be–Ne are identical to those for Be
most cases. For the states where the Be–Ne excitation
ergy differs from that of Be, the difference is always le
than 0.001 eV. These results imply that the size-consiste
of the SC-SF-CIS model is not considerably affected by
ing orbitals other than triplet UHF ones. Therefore, the qu
ity of SC-SF-CIS should be only slightly impacted by m
lecular size when using the restricted orbitals. The use of
restricted orbitals is important to ensure that the final wa
function is an eigenfunction ofŜ2.

B. H2O

Although the spin-flip approach is designed for bo
breaking problems, it is important to verify its performan
for well-behaved molecules at their equilibrium geometri
Somewhat surprisingly, in previous work SF-CIS had dif

TABLE II. SC-SF-CIS ground state total energies~hartree! and excitation
energies~eV! for Be atom with and without a Ne atom 100 Å away, using
6-31G basis set.a

State
Be

~singlet orbs!
Be

~triplet orbs!
Be–Ne

~singlet orbs!
Be–Ne

~triplet orbs!

1S(1s22s2) 214.584 255214.584 9042143.058 1322143.058 781
3P(1s22s2pz) 2.102 2.131 2.103 2.132
3P(1s22s2px,y) 2.129 2.132 2.129 2.132
1P(1s22s2pz) 5.938 5.973 5.938 5.973
1P(1s22s2px,y) 5.988 5.977 5.989 5.977
3P(1s22pz2px,y) 7.327 6.982 7.327 6.982
1D(1s22pz

2) 8.815 8.925 8.815 8.926

aSF methods employ a3P(1s22s2pz) reference.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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culty in accurately predicting the equilibrium geometry
H2O when the lowest-lying triplet state,3B1 , was used as a
reference,11 while SF calculations using a higher3B2 refer-
ence yielded accurate results. The origin of these probl
has been attributed to near-instabilities found for the3B1

Hartree–Fock wave function. Table III presents our SC-S
CIS values for H2O using the standard Huzi
naga–Dunning22,23 polarized double-z ~DZP! basis set. We
have employed the3B1 reference~to compare to previous
work! and a3A1 reference which would be more appropria
for breaking the O–H bonds.

SF-CIS using the3B1 reference greatly overestimates t
bond angle (107.7° versus 104.5° experimentally!. The SC-
SF-CIS method reduces this error, giving bond angles
106.1° and 106.6° using singlet and triplet orbitals, resp
tively. If one employs the3A1 reference, which is more ap
propriate for the type of bond breaking reactions targeted
the SF approach, then much more reasonable bond angle
obtained (104.6° and 103.9°), although now the bond len
is somewhat overestimated~by 0.005 or 0.022 Å!. The SC-
SF-CIS wave function for this case requires 78 determina
compared to 24 determinants for SF-CIS; both of these
spaces are very small. More complete SF models suc
SF-CIS~D! and SF-OD yield results for the3B1 reference
which are in good agreement with experiment or with co
ventional correlated single-reference methods such
second-order Møller–Plesset perturbation theory~MP2! or
coupled-cluster singles and doubles~CCSD!.

C. HF

The spin-flip approach seeks to address bond brea
processes. We have considered bond breaking in the HF
ecule using a 6-31G basis, for which an exact treatmen
electron correlation is readily accessible via full CI and
which previous SF results have been reported.9 Total elec-
tronic energies at various bond lengths are provided in Ta
IV, and potential energy curves are displayed in Fig. 3. F
HF, both the bonding and anti-bonding orbitals are ofs sym-

TABLE III. Total energies and equilibrium geometries for H2O using a DZP
basis set.a

Method Energy r e ue

SC-SF-CIS(singlet orbs)/(3B1) 276.055 171 0.9511 106.14
SC-SF-CIS(triplet orbs)/(3B1) 276.042 001 0.9572 106.56
SC-SF-CIS(singlet orbs)/(3A1) 276.059 521 0.9629 104.56
SC-SF-CIS(triplet orbs)/(3A1) 276.045 076 0.9799 103.92

SF-CIS/(3B1)b 276.005 093 0.9517 107.70
SF-CIS~D!/(3B1)b 276.240 017 0.9564 105.58
SF-OD/(3B1)b 276.268 212 0.9610 104.95

SCFa 276.047 009 0.9437 106.63
MP2b 276.258 560 0.9616 104.48
CCSDb 276.267 869 0.9610 104.63
CCSD~T!b 276.270 965 0.9618 104.49

Expt. 0.9578 104.5

aTotal energies in hartree, bond lengths in angstroms, and bond angl
degrees.

bReference 11.
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metry, so we have used a3S reference~in the SF language!
as in previous SF studies.9–11We note that this is the lowest
lying triplet state only at stretched geometries, and not
equilibrium, where the lowest triplet is of3P symmetry.

Figure 3 makes it clear that the spin-complete SC-S
CIS is a dramatic improvement over SF-CIS; the error in
well depth compared to full CI is reduced by more than 2
Figure 4 displays errors versus full CI as a function of bo
length. A perfectly flat error curve would indicate a potent
energy curve parallel to the full CI curve, and molecu
properties predicted from such a curve would be identica
the full CI results. The errors for SC-SF-CIS are genera
flat past about 1.5 Å, but become larger at shorter distan
This reflects the increased importance of dynamical elec
correlation—almost totally absent in SF-CIS or SC-S
CIS—when the nuclei are closer together. As expected, t
let orbitals yield slightly lower SC-SF-CIS energies at lar
distances, while singlet orbitals perform better around eq
librium. Overall, the singlet orbitals give a potential ener
curve which is more parallel to full CI.

As seen in the figures, the SF-CIS~D! method eliminates
the vast majority of the error in SF-CIS by including a
approximate, perturbative treatment of dynamical corre
tion. The SF-CIS~D! error curve in Fig. 4 is nearly flat. Sinc
SC-SF-CIS is a much better wave function than SF-CIS,
anticipate that perturbative corrections for dynamical cor
lation as in SF-CIS~D! should provide excellent result
across the entire potential energy surface at modest com
tational cost.

D. F2

F2 is a particularly challenging problem for electron
structure theory due to strong dynamical and nondynam

in

TABLE IV. Total energies~hartree! for HF dissociation using a 6-31G basi
set.a

RHF ~Å!
SC-SF-CIS

~singlet orbs!
SC-SF-CIS
~triplet orbs! SF-CISb FCIb

0.7 299.892 219 299.869 146 299.837 26 2100.005 489
0.8 299.973 916 299.960 823 299.929 34 2100.087 139
0.9 2100.003 583 299.999 269 299.968 11 2100.114 251
0.95 2100.008 009 2100.006 798 299.975 88 2100.116 698
1.0 2100.008 182 2100.009 077 299.978 53 2100.114 621
1.1 2100.000 391 2100.003 006 299.973 78 2100.102 115
1.2 299.986 493 299.988 806 299.961 64 2100.083 938
1.2764 299.973 972 299.975 479 299.950 30 2100.068 708
1.4 299.952 807 299.952 850 299.931 42 2100.044 285
1.6 299.921 562 299.919 569 299.904 71 2100.009 752
1.8 299.897 433 299.894 624 299.885 55 299.984 078
2.0 299.881 084 299.878 602 299.873 48 299.967 201
2.1 299.875 386 299.873 358 299.869 48 299.961 487
2.2 299.870 987 299.869 509 299.866 50 299.957 183
2.4 299.865 079 299.864 751 299.862 71 299.951 656
2.6 299.861 685 299.862 361 299.860 74 299.948 741
2.8 299.859 712 299.861 174 299.859 79 299.947 238
3.0 299.858 528 299.860 578 299.859 39 299.946 465
3.2 299.857 792 299.860 272 299.859 23 299.946 065
3.4 299.857 331 299.860 111 299.859 16 299.945 857

aSF models employ a3S reference.
bReference 9.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Potential energy curves for HF
using a 6-31G basis set. The minimum
energy at each level of theory has bee
set to zero.
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correlation effects. Indeed, it is unbound at the UHF leve
theory. Here we examine bond breaking in F2 using the
DZP1 basis set of Ref. 24, which is the standa
Huzinaga–Dunning22,23 double-z set with the most diffusep
function uncontracted and augmented by six Cartesiad
functions @ad(F)51.580#. Potential energy curves for SF
CIS and SC-SF-CIS are displayed in Fig. 5 and compare
previously published curves using SF-CIS~D!,11 CASSCF24

~which is identical to valence optimized orbital couple
cluster doubles, or VOO-CCD, in this particular case!, mul-
tireference CISD~MRCISD!,24 and VOO-CCD~2!.13 Table V
Downloaded 09 May 2003 to 128.125.104.83. Redistribution subject to A
f

to

presents total energies, equilibrium geometries, dissocia
energies, and harmonic vibrational frequencies for F2 pre-
dicted by several theoretical methods.

We observe that even the full valence CASSCF, wh
should properly describe nondynamical correlation, unde
timates the more reliable VOO-CCD~2! dissociation energy
by more than a factor of 2. Likewise, SF-CIS provides rath
poor results for this case, obtaining just 17% of the expe
mental dissociation energy and just 19% of the VO
CCD~2! result, which is probably the most reliable of th
theoretical values considered here. Just by adding the m
FIG. 4. Error vs FCI for HF using a
6-31G basis set.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Potential energy curves for F2

using a DZP1 basis set. The mini-
mum energy at each level of theor
has been set to zero.
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ing spin complements, SC-SF-CIS comes much close
matching the VOO-CCD~2! curve and obtains 83% of th
experimental dissociation energy and 91% of the VO
CCD~2! predicted dissociation energy. Singlet and triplet
bitals perform similarly, the latter being slightly closer
VOO-CCD~2! at large distances. The SF-CIS~D! method,
while greatly improving upon SF-CIS, nevertheless give
curve rather different than VOO-CCD~2!. Given that SC-SF-
CIS is a much better starting point, we expect that SC-
CIS~D! results would agree well with VOO-CCD~2!.

The very large error in the SF-CIS bond length~more
than 0.15 Å! is reduced to less than 0.06 Å in SC-SF-CI

TABLE V. Equilibrium distances, dissociation energies, and harmonic
brational frequencies for F2 molecule using a DZP1 basis set.a

Method Re De ve Etot

SC-SF-CIS~singlet orbs! 1.469 1.29 826.44 2198.851 06
SC-SF-CIS~triplet orbs! 1.448 1.37 855.94 2198.858 07

SF-CISb 1.567 0.28 468 2198.801 57
SF-CIS~D!b 1.429 1.14 824 2199.195 42
SF-ODb 1.437 1.24 831 2199.223 16

RHFc 1.332 10.69 1254
RHF-CCSDc 1.410 2.36 945
UHF-CCSDc 1.410 0.95 1006e

VOO-CCD~2!d 1.417 1.51 899e 2199.205 71
MR-CISDc 1.435 1.22 821

Expt. 1.412 1.66 916.64

aSF models employ a3Su reference. Total energies are in hartree, dissoc
tion energies are in eV, bond lengths are in Å , and vibrational frequen
are in cm21. De was computed as the total energy difference atRe and
RFF5100 bohr.

bReference 11.
cReference 24.
dReference 13.
eThis work.
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Likewise, the dissociation energy of 0.28 eV predicted
SF-CIS is greatly improved by SC-SF-CIS~1.3-1.4 eV de-
pending on orbital choice! when compared to the VOO
CCD~2! result of 1.51 eV or the experimental value of 1.6
eV. Note that similar improvement is achieved in freque
cies. The SF-CIS underestimates experimental frequen
@or accurate theoretical frequencies, such as the RHF-CC
or VOO-CCD~2! ones# by almost a factor of 2. The SC-SF
CIS frequencies are much better, and are surprisingly c
to the SF-CIS~D! and the SF-OD ones. It is also surprisin
that, when comparing to the experimental frequency, only
RHF-CCSD model outperforms the vibrational frequenc
computed by the SC-SF-CIS model with triplet orbitals f
this unusually challenging case. Furthermore, note that
simple SC-SF-CIS method gives better dissociation ener
than even coupled-cluster singles and doubles, CCSD, u
either a RHF or UHF reference. Only SF or multireferen
methods which include dynamical correlation@i.e., SF-
CIS~D!, SF-OD, VOO-CCD~2!, or MRCISD# approach the
quality of the simple SC-SF-CIS predictions of the dissoc
tion energy, and for this basis set only VOO-CCD~2! is
closer to experiment.

E. C2H4

For a different type of bond breaking, we consider t
rotation about the C–C bond in ethylene, which requires
breaking of ap bond. This is a challenging test case f
theory, since traditional single-reference methods yield
unphysical cusp in the torsional potential at 90°. The t
sional potential has been calculated by freezing all degree
freedom except the torsional angle, and the DZP basis
geometrical parameters used here match those in prev
work.8 Total energies are presented in Table VI, and Fig
plots the torsional potentials at each level of theory. Figur

-

-
s

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



rier

9092 J. Chem. Phys., Vol. 118, No. 20, 22 May 2003 Sears, Sherrill, and Krylov

Downloaded 09 M
TABLE VI. Total energies~hartree! for ethylene torsional potential using a DZP basis. Unoptimized bar
height,DE5E(90°)2E(0°), is also shown.a

Angle ~deg!
SC-SF-CIS

~singlet orbs!
SC-SF-CIS
~triplet orbs!

SC-SF-CIS
~TCSCF orbs! SF-CISb SF-CIS~D!b SF-ODb TCSCF-CISDb

0 278.097 12 278.105 83 278.113 87 278.068 70278.346 37278.388 38 278.365 89
15 278.091 95 278.100 87 278.109 09 278.064 26278.341 98278.383 93 278.361 43
30 278.077 25 278.086 36 278.094 85 278.051 09278.328 77278.370 69 278.348 12
45 278.054 42 278.063 22 278.071 49 278.029 85278.306 99278.349 08 278.326 34
60 278.025 26 278.033 14 278.039 95 278.002 60278.277 90278.320 31 278.297 24
75 277.994 50 278.000 65 278.003 90 277.974 93278.246 19278.288 27 278.264 71
80 277.986 11 277.991 50 277.993 22 277.967 81278.237 41278.278 95 278.255 22
85 277.980 29 277.984 99 277.985 46 277.963 01278.231 29278.272 18 278.248 33
90 277.978 21 277.982 17 277.982 55 277.961 31278.229 07278.269 64 278.245 74

DE ~eV! 3.24 3.36 3.57 2.92 3.19 3.23 3.27

aGeometry used:r CC51.330 Å, r CH51.076 Å, aHCH5116.6°. DE for RHF, OD, VOD~2!, and CASSCF
methods are 4.76, 3.91, 3.43, and 3.40 eV, respectively~Ref. 13!.

bReference 9.
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displays these potentials near the barrier. We compare
SF-CIS with three different choices of orbitals~singlet, trip-
let, and TCSCF orbitals! to SF-CIS, CASSCF, SF-CIS~D!,
SF-OD, and TCSCF-CISD. The most reliable results c
rently available are from the TCSCF-CISD method, whi
generates all single and double excitations out of the
determinants@(p)2 and (p* )2] in the TCSCF reference
However, since SC-SF-CIS does not include substantial
namical correlation, we cannot hope to match the TCSC
CISD results. Instead, a more direct comparison is to
method with a reliable treatment of nondynamical corre
tion, such as CASSCF.

The choice of orbitals in the SC-SF-CIS procedure
clearly important; we observe large differences~several
kcal mol21) in energies depending on which orbitals a
used. For mimicking the behavior of CASSCF, SC-SF-C
with triplet orbitals is best, with very small differences fro
CASSCF ~the difference in the barrier height is ju
ay 2003 to 128.125.104.83. Redistribution subject to A
C-

r-

o

y-
-
a
-

s

0.8 kcal mol21). SC-SF-CIS with singlet orbitals underest
mates the CASSCF barrier height by about 3.7 kcal mol21,
and SC-SF-CIS with TCSCF orbitals overestimates the b
rier hight by about the same amount (4.1 kcal mol21). The
use of singlet orbitals makes SC-SF-CIS fortuitously close
the much more complete TCSCF-CISD treatment. It is p
haps surprising that the TCSCF orbitals, which are optim
for both of the important configurations at 90°, do not gi
better results. However, Table VI makes it clear that the ov
estimation of the barrier height is actually due to an i
proved treatment of the untwisted ethylene at 0°; it appe
that the TCSCF orbitals allow SC-SF-CIS to recover a sm
part of the dynamic correlation near 0°, while they are ab
the same as triplet orbitals in describing the nondynam
correlation at 90°. Whether singlet, triplet, or TCSCF orb
als are used, the SC-SF-CIS results are significantly
proved over SF-CIS in matching the CASSCF curve.
r
e
f

FIG. 6. Potential energy curves fo
ethylene using a DZP basis set. Th
minimum energy at each level o
theory has been set to zero.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. Potential energy curves fo
ethylene using a DZP basis set ne
90°. The minimum energy at eac
level of theory has been set to zero.
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F. Trimethylenemethane „TMM…

A molecule with a broken bond has two unpaired ele
trons and can be loosely called a diradical.25 More rigor-
ously, Salem defines diradicals as molecules in which
electrons occupy two~near!-degenerate orbitals.25 Due to
large nondynamical correlation effects, this is a difficult si
ation which is well described by the SF approach due to
balanced treatment of the four nearly degenerate config
tions needed to describe low-lying diradical states.26

To investigate this application of the SF method, SC-S
CIS has been used to predict the lowest energy levels
TMM. The planar ground state (3A28) of TMM is of D3h

symmetry. The largest Abelian subgroup ofD3h (C2v) is
used for computational purposes. The3B2 (C2v symmetry
label! reference is used in the conventional SF terminolo
The SC-SF-CI ground state total energy and vertical exc
tion energies for the lowest excited states have been obta
in the same geometry and DZP basis set used in prev
studies26 ~see Table VII, which employs theC2v symmetry
labels for excited states!. The SC-SF-CIS results are com
pared to a hierarchy of traditional SF methods.

The most accurate vertical excitation energies are th
calculated by SF-OD. Unexpectedly, the SC-SF-CIS actu
does worse than SF-CIS for the lowest singlet states. Th
Downloaded 09 May 2003 to 128.125.104.83. Redistribution subject to A
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probably due to the surprisingly good performance of S
CIS for these states. The SF-CIS error for these state
0.044 eV. A maximum error of 0.753 eV is obtained for the
states using the SC-SF method. As previously mention
errors of an electron volt or more are common for CIS. Th
these results are surprisingly good for a method that cont
primarily single excitations. The benefits of the SC-SF-C
method become noticeable, however, when one consider
higher excited states of TMM. Errors in the vertical excit
tion energies range from 1.5 to 2.6 eV for conventional S
CIS, while the errors in SC-SF-CIS never exceed 1.7 eV
are typically around 0.5 eV for all states except the seco
A1 state. Apparently, the SC-SF approach offers a more
anced treatment of all of the low-lying excited states.

As for other test cases, the perturbative corrections to
as in SF-CIS~D! greatly correct the errors of SF-CIS. Indee
SF-CIS~D! reduces the errors in vertical excitation energ
to less than 0.492 eV for TMM. We anticipate that SC-S
CIS~D! will offer even better results for such systems.

IV. CONCLUSIONS

Employing spin eigenfunctions significantly improve
the quality of the SF-CIS results for the single bond break
processes and excited states. Indeed, the SC-SF-CIS me
0
9
2
9
1

TABLE VII. Ground state total energies~hartree! and excitation energies~eV! for TMM using a DZP basis set.a

Method 3A28
1A1

1B2 2 1A1
3A1

3B2
5B2

SC-SF-CIS~singlet orbs! 2154.937 82 1.951 1.529 5.651 6.475 5.899 7.75
SC-SF-CIS~triplet orbs! 2154.937 03 1.376 1.372 5.263 6.105 5.123 6.88
SF-CISb 2154.905 53 1.154 1.154 6.627 8.428 8.428 5.71
SF-CIS~D!b 2155.435 85 1.160 1.160 3.821 6.018 6.018 6.72
SF-ODb 2155.514 14 1.198 1.198 4.000 5.941 5.941 7.22

aSF-DFT/6-31G* optimized geometries~see Ref. 26!.
bReference 26.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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eliminates spin-contamination and recovers over 50% of
error in the SF-CIS dissociation energies. Formally, sp
completeness is achieved by adding a selected subset of
bly and triply spin-orbital excited~with respect to the SF
reference! determinants. Although the number of determ
nants increases, the scaling of the number of determin
comprising the SC-SF-CIS determinantal space is the s
as in SF-CIS, i.e.,O(OV) as opposed to theO(O2V2) scal-
ing of the size of the SF-CISD subspace.

Results are not dramatically different for differe
choices of orbitals. This implies that the excellent perf
mance of the SF approach is due to the determinants
cluded in the wave function and not the orbital choice. T
determinants that represent single SF excitations from
triplet reference, including their spin complements, are
portant in describing the changes that take place when bo
are stretched from equilibrium. Further investigations in
the importance of various classes of determinants for
scribing stretched geometries are under way.

In cases where the SF-CIS method works only qual
tively ~e.g., F2), the SF-CIS~D! approach was very close t
the more computationally expensive benchmark results.
anticipated that perturbative correction to the improv
zeroth-order reference will offer even better results than
CIS~D! at equivalent computational costs.
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