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We present a general implementation of the resolution-of-the-identity (RI) and Cholesky decom-
position (CD) representations of electron repulsion integrals within the coupled-cluster with single
and double substitutions (CCSD) and equation-of-motion (EOM) family of methods. The CCSD and
EOM-CCSD equations are rewritten to eliminate the storage of the largest four-index intermediates
leading to a significant reduction in disk storage requirements, reduced I/O penalties, and, as a re-
sult, improved parallel performance. In CCSD, the number of rate-determining contractions is also
reduced; however, in EOM the number of operations is increased because the transformed integrals,
which are computed once in the canonical implementation, need to be reassembled at each Davidson
iteration. Nevertheless, for large jobs the effect of the increased number of rate-determining con-
tractions is surpassed by the significantly reduced memory and disk usage leading to a considerable
speed-up. Overall, for medium-size examples, RI/CD CCSD calculations are approximately 40%
faster compared with the canonical implementation, whereas timings of EOM calculations are re-
duced by a factor of two. More significant speed-ups are obtained in larger bases, i.e., more than a
two-fold speed-up for CCSD and almost five-fold speed-up for EOM-EE-CCSD in cc-pVTZ. Even
more considerable speedups (6-7-fold) are achieved by combining RI/CD with the frozen natural
orbitals approach. The numeric accuracy of RI/CD approaches is benchmarked with an emphasis on
energy differences. Errors in EOM excitation, ionization, and electron-attachment energies are less
than 0.001 eV with typical RI bases and with a 10−4 threshold in CD. Errors with 10−2 and 10−3

thresholds, which afford more significant computational savings, are less than 0.04 and 0.008 eV,
respectively. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820484]

I. INTRODUCTION

Theoretical model chemistries1 based on wave func-
tion methods provide the most reliable approach to electron
correlation. Among different ab initio-based techniques,2

coupled-cluster (CC) theory holds a pre-eminent position.3

The single-reference CC hierarchy of approximations al-
lows one to compute highly accurate molecular structures,
reaction energies, and other properties for ground-state
species.2 The equation-of-motion (EOM), or linear response,
approach4–6 extends the CC formalism to a variety of multi-
configurational wave functions encountered in electronically
excited states and various open-shell species. Unfortunately,
similarly to other wave function based methods, the compu-
tational cost and hardware requirements (disk and memory)
of CC and EOM-CC scale quite steeply with the number of
electrons and the size of the one-electron basis set, i.e., the
number of occupied (O) and unoccupied, or virtual (V ), or-
bitals. For example, the scaling of a CCSD (coupled-cluster
with single and double substitutions) calculation is O2V 4,
and for CCSDT (CCSD plus explicit triple excitations) it is
O3V 5. The disk usage in CC and EOM-CC calculations de-
pends on the implementation specifics and can reach O(V 4);

integral-direct algorithms could be employed to reduce stor-
age requirements.

The high cost of electronic structure calculations origi-
nates in the two-electron part of the molecular Hamiltonian
that describes electron-electron repulsion. The representation
of the electron-repulsion integrals (ERIs) in an atomic orbital
(AO) basis gives rise to a four-index tensor:

(μν|λσ ) =
∫

χμ(�r1)χν(�r1)
1

|�r1 − �r2|χλ(�r2)χσ (�r2)d�r1d�r2.

The size of this object scales as N4 where N is the number
of basis functions χi(�r). For accurate results the size of the
AO basis needs to be sufficiently large, for example a popular
cc-pVTZ basis defines 30 contracted Gaussian functions per
second-row atom.

All electronic structure methods include contractions of
ERIs with various tensors, such as reduced density matrices,
wave functions amplitudes, etc. Thus, the large size of ERIs
propagates through the electron structure calculations from
self-consistent field up to correlated methods.

Fortunately, the structure of the ERI matrix is
sparse, which can be exploited in efficient computer

0021-9606/2013/139(13)/134105/16/$30.00 © 2013 AIP Publishing LLC139, 134105-1

Downloaded 13 Oct 2013 to 132.174.255.3. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4820484
http://dx.doi.org/10.1063/1.4820484
http://dx.doi.org/10.1063/1.4820484
http://dx.doi.org/10.1063/1.4820484
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4820484&domain=pdf&date_stamp=2013-10-02


134105-2 Epifanovsky et al. J. Chem. Phys. 139, 134105 (2013)

implementations. It was recognized a long time ago that
representing the “densities” by a linear expansion over
the products of particular one-electron functions, such as
χμ(�r1)χν(�r1), includes linear dependencies and could be
rewritten in a more compact form using a new set of basis
functions.

There are two alternative approaches to achieve this goal,
the density fitting, or resolution-of-the-identity (RI),7–13 ap-
proximation and the Cholesky decomposition (CD).14–20 In
both approaches, the decomposed ERI matrix is represented
as

(μν|λσ ) ≈
M∑

P=1

BP
μνB

P
λσ , (1)

where M is the rank of the decomposition, which depends on
the target accuracy. The algorithm for determining B is differ-
ent in RI and CD approaches: RI uses a predetermined auxil-
iary basis set that corresponds to the primary one-electron ba-
sis, whereas Cholesky vectors are obtained by performing the
Cholesky decomposition of the actual ERI matrix. CD is thus
a more general approach that can work with any primary basis
and is free from externally optimized auxiliary basis sets. The
Cholesky approach can be viewed as system-specific density
fitting.17–19

Decomposition shown in Eq. (1) produces a more com-
pact representation of ERIs compared with the full ERI ma-
trix, thus enabling memory and disk savings. In addition, it
allows one to achieve improved parallel performance of cal-
culations involving ERI through reduced disk input-output
(I/O) penalties and better CPU utilization. For example, the
AO-MO integral transformation has a computational cost of
O(N5) when using the canonical procedure, now only in-
volves the transformation of the RI/Cholesky vectors and
therefore requires only O(N3M) steps. The transformed B-
matrices can be used to assemble 〈pq||rs〉 integrals as needed
in integral-direct implementations. However, to realize the
maximum potential of the method, programmable equations
that involve contractions of ERIs with the amplitudes and den-
sity matrices need to be rewritten.

The RI/Cholesky representation by itself does not lead
to a scaling reduction in CCSD and EOM equations unless
special care is taken about exchange-like terms. A number of
strategies have been pursued to this end,19, 21, 22 including us-
ing Cholesky decomposed wave function amplitudes23, 24 and
local correlation schemes (see, for example, Refs. 25, 26 and
references therein). However, even without these more ad-
vanced algorithms, computational savings due to a straight-
forward implementation of RI/Cholesky representations are
very useful, especially in view of improved parallel scaling.

We present our implementation of RI/Cholesky within
the CCSD and EOM-CCSD suite of methods in the Q-Chem
electronic structure package.27, 28 The implementation elimi-
nates the storage of the most expensive four-index integrals
and intermediates. As described below, in the EOM-CCSD
implementation we choose to keep two smallest four-index
intermediates, OOOO and OOOV.

While CCSD implementations have been reported
before,29, 30 the EOM-CCSD methods have not been reim-

plemented using RI/CD. Below we briefly describe the
algorithms used to produce Cholesky and RI vectors
(Secs. II A and II B) and give programmable CCSD and
EOM-CCSD equations (Sec. III). The following EOM meth-
ods have been implemented: EE/SF, IP, and EA. We discuss
the performance of the new implementation in Sec. IV.

II. ALGORITHMS

A. Cholesky algorithm

The idea of CD of ERI14, 15, 17, 31 was proposed over 30
years ago by Beebe and Linderberg.14 The ERI matrix in the
AO basis, which is a positive-semidefinite14 matrix, can be
represented in the Cholesky-decomposed form as given by
Eq. (1). The rank of the decomposition, M, is typically 3–10
times the number of basis functions N.17 It depends on the de-
composition threshold δ and is considerably smaller than the
full rank of the matrix, N(N + 1)/2.14, 17, 32 CD removes lin-
ear dependencies in product densities17 (μν|, allowing one to
approximate the original matrix to arbitrary accuracy.

Decomposition threshold δ defined by the user is the only
parameter that controls the accuracy and the rank of the de-
composition. The algorithm15, 17, 31 proceeds as follows:

(1) Compute all diagonal elements of ERI: D0
λσ,λσ

= (λσ |λσ ).
(2) Choose the largest diagonal element (λσ 0|λσ 0). (λσ )0

here is a fixed index corresponding to the largest diago-
nal element.

(3) Compute densities (μν|λσ 0).
(4) Compute first Cholesky vector B1

μν = (μν|λσ0)/√
(λσ0|λσ0).

From this point the algorithm proceeds in an iterative
manner, checking the accuracy and generating a new
Cholesky vector to refine the previous-step approxima-
tion at every iteration. k is an iteration count that starts
from 2 and increments after every iteration.

(5) Update the residual of the diagonal by subtracting
the Cholesky vector obtained in the previous iteration
D

(k−1)
λσ,λσ = D

(k−2)
λσ,λσ − B

(k−1)
λσ B

(k−1)
λσ .

(6) Choose the largest element of the diagonal residual
Dk−1

λσk−1,λσk−1
. If Dk−1

λσk−1,λσk−1
< δ, then terminate and return

the Cholesky vectors, {Bi
μν}k−1

i=1 .
(7) Compute densities (μν|λσ k − 1) and the corresponding

residual, D
(k−1)
μν,λσk−1

= (μν|λσk−1) − ∑k−1
i=1 Bi

μνB
i
λσk−1

.

(8) Compute new Cholesky vector Bk
μν = Dk−1

μν,λσk−1
/√

Dk−1
λσk−1,λσk−1

. Repeat from step (5).

Since the ERI matrix is positive-semidefinite,8, 14, 33 it
follows that

|Dk−1
μν,λσ | ≤

√
Dk−1

μν,μνD
k−1
λσ,λσ .

Thus, the accuracy of the decomposition is given by the
largest element of diagonal residual matrix Dλσ , λσ at every
iteration (step 6), which ensures that the error in any ERI ma-
trix element does not exceed δ.

Note that the algorithm does not require the calculation
and storage of the full ERI matrix [O(N4)], which would be
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prohibitive for large systems. At the initialization of the al-
gorithm only the calculation of the diagonal elements is nec-
essary [step 1, O(N2)], which are updated at each iteration
by subtracting newly produced Cholesky vectors to form a
residual diagonal matrix (step 5). The calculation of the den-
sities (μν|λσ k − 1) [step 7, O(N2)] are performed at each step
with subsequent calculation of the residual and the corre-
sponding Cholesky vector (step 8). At each iteration only the
calculation of new O(N2) elements of the ERI matrix is re-
quired and the number of Cholesky vectors grows by one re-
sulting in the O(MN2) memory storage of all Cholesky vec-
tors for the final decomposition. Thus, only a small fraction
of about 1–5% of the full ERI matrix needs to be stored in
memory in the decomposition procedure.17

The most expensive step is the calculation of the resid-
ual matrix17 (step 7), which requires (M − 1) subtractions
of previously obtained Cholesky vectors at each iteration
[O((M − 1)N2) operations at each iteration], giving rise to
the full complexity of the algorithm of O(M2N2). For corre-
lated calculations, the Cholesky vectors obtained in the AO
basis are usually transformed to the molecular orbital (MO)
basis.

This algorithm is implemented using our tensor algebra
library34 such that Cholesky vectors are stored as a list of
two-dimensional block tensors, i.e., a list of block matrices.
The library is based on virtual memory management such that
block tensors are stored in RAM if sufficient memory is avail-
able or saved on disk and reloaded as necessary. Note that the
generation of a new Cholesky vector [steps 5–8] does not re-
quire vectors from previous iterations (k − 1 at step k) to be in
RAM; for calculation of the residual matrix (step 5) they can
be uploaded from disk sequentially, or even block-by-block.
After all Cholesky vectors Bμν are generated, the list of block
matrices is merged to form a three-dimensional block tensor
BM

μν containing all the Cholesky vectors.

B. Resolution-of-the-identity algorithm

Similar to the Cholesky decomposition, the RI
approach8–13 allows one to expand product densities
(μν| in an auxiliary basis set:

(μν|λσ ) ≈
∑
PQ

CP
μν(P |Q)CQ

λσ ≡
∑
PQ

(μν|P )(P |Q)−1(Q|λσ ).

Indices P and Q denote auxiliary basis functions and (P|Q)
defines a Coulomb metric matrix:13, 17, 20

(P |Q) =
∫

P (�r1)Q(�r2)

|�r1 − �r2| d�r1d�r2.

The auxiliary basis expansion coefficients (CL
μν) are

found by minimizing the difference between the actual and
fitted product densities,13, 17, 18 leading to the following set of
linear equations: ∑

L

(K|L)CL
μν = (K|μν).

By defining new auxiliary basis coefficients

BK
μν ≡

∑
L

CL
μν(L|K)1/2 =

∑
L

(K|μν)(K|L)−1/2,

we can rewrite approximate ERIs in a form identical to the
Cholesky representation13 as given by Eq. (1).

The accuracy and performance of RI depend on the qual-
ity of the chosen auxiliary basis set. Ideally an auxiliary basis
set should be balanced between accuracy and compactness.
Errors should be at least an order of magnitude smaller than
the error due to one-electron basis set incompleteness. Rank
M should be no more that 2–4 times larger than the number of
AO basis functions N.7, 17, 35–40 To achieve these goals, auxil-
iary basis sets are usually optimized for each atom, AO basis
set, and level of theory (e.g., Hartree–Fock, MP2).7, 17, 35–40 In
this work, we employ auxiliary basis sets developed for MP2.

III. RI/CD CCSD AND EOM-CCSD METHODS: THEORY

A. Coupled-cluster equations with single
and double substitutions

The exact solution of the Schrödinger equation can be
written as the exponential of a cluster operator T̂ operating
on a reference function:41

�exact = �CC = eT̂ �0,

where �0 is a single Slater determinant. In CCSD, the expan-
sion of T̂ is truncated at a two-electron excitation level:

T̂ ≈ T̂1 + T̂2.

For T̂1 and T̂2, the expansions are:42

T̂1 =
∑
ia

tai a†i T̂2 = 1

4

∑
ijab

tab
ij a†ib†j.

Thus,

�CCSD = eT̂1+T̂2�0.

The equations to determine CCSD correlation energy
ECCSD and cluster amplitudes tai , tab

ij are derived algebraically
by a projection approach such that the Schrödinger equation
is satisfied in the subspace spanned by the reference, singly,
and doubly excited determinants:

ECCSD = 〈�0|Ĥ |�CCSD〉 = 〈�0|Ĥ |
(

1+T̂1+1

2
T̂ 2

1 +T̂2

)
�0〉,

(2)

0 = 〈�a
i |Ĥ − ECCSD|�CCSD〉

= 〈�a
i |Ĥ−ECCSD|

(
1+T̂1+1

2
T̂ 2

1 +T̂2+T̂1T̂2+ 1

3!
T̂ 3

1

)
�0〉,

(3)

0 = 〈�ab
ij |Ĥ − ECCSD|�CCSD〉

=
〈
�ab

ij |Ĥ − ECCSD|
(

1 + T̂1 + 1

2
T̂ 2

1 + T̂2 + T̂1T̂2 + 1

3!
T̂ 3

1

+ 1

2
T̂ 2

2 + 1

2
T̂ 2

1 T̂2 + 1

4!
T̂ 4

1

)
�0

〉
. (4)
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Evaluating Eq. (2) in terms of amplitudes tai and tab
ij yields the

following expression:

ECCSD = 〈�0|Ĥ |�0〉+
∑
ia

fiat
a
i + 1

2

∑
ijab

〈ij ||ab〉tai tbj

+ 1

4

∑
ijab

〈ij ||ab〉tab
ij , (5)

where:

fia = 〈�a
i |Ĥ |�0〉 = hia +

∑
j

〈ij ||aj 〉

〈ij ||ab〉 = 〈ij |ab〉 − 〈ij |ba〉 = (ia|jb) − (ib|ja)

(ia|jb) =
∫

φi(1)φj (2)
1

r12
φa(1)φb(2)d1d2.

Once Eq. (5) is substituted into Eqs. (3) and (4), tai and tab
ij

amplitudes can be solved iteratively by

tai 
a
i = fia−

∑
l

F
(3)
li t al +

∑
d

F
(1)
ad tdi +

∑
kc

F
(2)
kc tac

ik

−
∑
kc

〈ic||ka〉t ck−
1

2

∑
klc

〈kl||ic〉tac
kl +1

2

∑
kcd

〈ka||cd〉t cdki

and

tab
ij 
ab

ij = 〈ij ||ab〉 + P−
ab

{ ∑
c

tac
ij F

(2)
bc −

∑
k

I
(2a)
ijkb t

a
k

+P−
ij

∑
kc

I
(1a)
kbict

ac
jk

}

+P−
ij

{∑
c

〈jc||ba〉t ci −
∑

k

tab
ik F

(2)
jk

}

+ 1

2

∑
cd

〈ab||cd〉t̃ cdij + 1

2

∑
kl

tab
kl I

(4)
ijkl,

where 
a
i = fii − faa and 
ab

ij = 
a
i + 
b

j . The expressions
for the intermediates are given in Table I.

Memory requirements for the T amplitude update proce-
dure in the closed-shell case are43

9

8
O4 + 3O3V + 6O2V 2 + 3

2
OV 3 + 3

8
V 4. (6)

This estimate includes all the blocks of ERIs, necessary four-
index intermediates, and two sets of T2 amplitudes. Excluded
are additional copies of T amplitudes required by the DIIS44

procedure and lower-dimensional quantities. The O(N6) part
of the total computational cost of updating T amplitudes is
7
4O4V 2 + 29

4 O3V 3 + 5
8O2V 4.

B. Equations for CD/RI CCSD in the spin-orbital basis

Because RI and Cholesky representations of ERI use
identical expressions, we begin with the following expression
for anti-symmetrized integrals:

〈μλ||νσ 〉 ≈
∑
P

BP
μνB

P
λσ −

∑
P

BP
μσBP

λν = P−
νσ

∑
P

BP
μνB

P
λσ .

(7)
Upon substituting Eq. (7) into Eq. (5), the RI/CD CCSD
energy can be computed as follows:

ECCSD = 〈�0|Ĥ |�0〉 +
∑
ia

(
fia + 1

2

∑
P

BP
iaM

2T
P

− 1

2

∑
jP

BP
ja

(
MP

ij − BP
ij

))
tai

+ 1

2

∑
ijab

( ∑
P

BP
iaB

P
jb

)
tab
ij .

TABLE I. Intermediates for CCSD calculations45 and estimates to store and compute them (closed-shell case).

Equation Memory Flops

F
(1)
bc = fbc + ∑

kd 〈kb||dc〉tdk − 1
2

∑
kld 〈kl||cd〉tbd

kl

F
(2)
ij = fij + ∑

a fjat
a
i + ∑

ka〈jk||ia〉tak + ∑
kab〈jk||ab〉tai tbk + 1

2

∑
kab〈jk||ab〉tab

ik

F
(2)
ia = fia + ∑

jb〈ij ||ab〉tbj
F

(2)
bc = F

(1)
bc − ∑

k fkct
b
k − ∑

kld 〈kl||cd〉tbk tdl

F
(3)
ki = fki + ∑

c F
(2)
kc tci + 1

2

∑
jab〈kj ||ab〉tab

ij + ∑
lc〈kl||ic〉tcl

t̃ ab
ij = tab

ij + 1
2P

−
ij P

−
abt

a
i tbj

3
4 O2V 2

I
(1a)
iajb = 〈ia||jb〉 − ∑

c〈ia||bc〉tcj − ∑
k〈ik||jb〉tak − 1

2

∑
kc〈ik||cb〉(tcajk + 2tcj tak

)
2O2V 2 3O3V 3

I
(2a)
ijkb = 〈ij ||kb〉 − 1

2

∑
l I

(4)
ijkl t

b
l + 1

2

∑
cd 〈kb||cd〉t̃ cdij + P−

ij

∑
c〈kb||ic〉tcj 3

2 O3V 5
4 O3V 3

I
(4)
ijkl = 〈ij ||kl〉 + 1

2

∑
ab〈kl||ab〉t̃ ab

ij + P−
ij

∑
a〈kl||ia〉taj 3

4 O4 5
8 O4V 2

∑
kc I

(1a)
kbict

ac
jk 3O3V 3

∑
cd 〈ab||cd〉t̃ cdij

5
8 O2V 4

∑
kl t

ab
kl I

(4)
ijkl

5
8 O4V 2
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The expressions for tai and tab
ij amplitudes become

tai 
a
i = fia +

∑
d

fad t
d
i −

∑
kP

MP
ki

(
M2T

kaP − M2T T
kaP

)

+
∑
P

M2T
P MP

ia

−
∑

l

(∑
c

flct
c
i + fli

)
tal −

∑
kP

M3T
kaP

(
MP

ki − BP
ki

)

+
∑
cP

MP
caM

2T
icP

+
∑
kc

tac
ik

[
fkc−

∑
jP

(
MP

kj−BP
kj

)
BP

jc

]
−

∑
cP

M1T
icP BP

ac,

(8)

tab
ij 
ab

ij = I
(2i)
ijab + P−

ab

{∑
P

MP
iaM

P
jb +

∑
c

tac
ij F

(2)
bc

+P−
ij

[ ∑
kc

(
1

2
I

(1i)
kcib +

∑
P

MP
kiM

P
cb

)
tac
jk

]}

−P−
ij

∑
k

tab
ik F

(2)
jk

+ 1

2

∑
kl

(
I

(3i)
ijkl + P−

ij

∑
P

MP
kiM

P
lj

)
tab
kl , (9)

I
(1i)
kcib =

∑
ld

( ∑
P

BP
kdB

P
lc

)
tbd
il , (10)

I
(2i)
ijab = −1

2

∑
cd

(
P−

ab

∑
P

MP
daM

P
cb

)
t cdij , (11)

I
(3i)
ijkl = 1

2

∑
cd

(
P−

cd

∑
P

BP
kcB

P
ld

)
t cdij . (12)

I (1i), I (2i), and I (3i) intermediates are computed on the
fly using a three-tensor contraction procedure46 and are
immediately added to the result. Expressions for the new
M-intermediates and the revised F(2)-intermediates are given
in Table II.

The notation for M-intermediates is as follows: upper in-
dex 1, 2, or 3 denotes the terms containing BP

oo, BP
ov or BP

vv ,
respectively. M2T is used for the terms that include a contrac-
tion between BP

ov and a T-amplitude. M2TT denotes the terms
that include the contraction of M2T with a T-amplitude.

All M(xT), M, and F(2) intermediates in Table II are re-
computed at each CCSD iteration by using the most current tai
and tab

ij amplitudes. The intermediates are discarded after hav-
ing been used to compute updated T-amplitudes. After CCSD
equations have been solved, intermediates F(2), M, I (2b), and
I (4b) are computed using the converged T-amplitudes and
stored to be reused in property and EOM calculations.

Total storage requirements47 for the amplitude update
procedure in CD/RI-CCSD, including all necessary integrals,

TABLE II. Intermediates used in CD/RI-CCSD calculations, including
modified F(2), I (2b), I (4b), and estimates to store and compute them (closed-
shell case).

Equation Memory Flops

M1T
iaP = ∑

j BP
ij taj OV M

M2T
iaP = ∑

jb BP
jbt

ab
ij OV M

M2T T
iaP = ∑

j

(
MP

ji − BP
ji

)
taj OV M

M3T
iaP = ∑

b BP
abt

b
i OV M

M2T
P = ∑

jb BP
jbt

b
j

MP
ij = ∑

a BP
iat

a
j + BP

ij O2M

MP
ia = M3T

iaP − M1T
iaP − M2T T

iaP + BP
ia + M2T

iaP OV M

MP
ab = BP

ab − ∑
j BP

jat
b
j V 2M

F
(2)
ij = fij + ∑

a fjat
a
i + ∑

P MP
kj M

2T
P

−∑
lP

(
MP

kl − BP
kl

)
MP

lj + ∑
cP BP

kcM
2T
jcP

F
(2)
ia = fia + ∑

P BP
iaM

2T
P − ∑

jP BP
ja

(
MP

ij − BP
ij

)
F

(2)
bc = fbc − ∑

kP BP
kc

(
M2T

kbP + M3T
kbP − M2T T

kbP

)
+∑

P MP
cbM

2T
P − ∑

k fkct
b
k

I
(2b)
ijka = −P−

ij

{ ∑
P MP

kj M
P
ia + ∑

lc

( ∑
P BP

kcM
P
li

)
tac
j l

}
+∑

cd

( ∑
P BP

kcM
P
da

)
tcdij − ∑

c tac
ij F

(2)
kc

3
2 O3V 3

2 O4V 2

I
(4b)
ijkl = P−

ij

∑
P MP

kiM
P
lj + ∑

ab

(∑
P BP

kaB
P
lb

)
tab
ij

3
4 O4 5

8 O4V 2

I
(1i)
kcib (Eq. (10)) 2O3V 3

I
(2i)
ijab (Eq. (11)) 5

8 O2V 4

I
(3i)
ijkl (Eq. (12)) 5

8 O4V 2

∑
kc

( 1
2 I

(1i)
kcib + ∑

P MP
kiM

P
cb

)
tac
jk 2O2V 2 2O3V 3

∑
kl

(
I

(3i)
ijkl + P−

ij

∑
P MP

kiM
P
lj

)
tab
kl

3
4 O4 5

8 O4V 2

intermediates, and two copies of T amplitudes, are as follows:

3

2
O2M + 6OV M + 3

2
V 2M + 3

4
O4 + 7

2
O2V 2. (13)

To illustrate the difference in storage requirements, con-
sider a calculation of closed-shell naphthalene using the cc-
pVTZ/rimp2-cc-pVTZ basis set. There are 68 electrons, 412
basis functions (O = 34, V = 378), and 1050 auxiliary basis
functions (M = 1050). Whereas conventional CCSD calcula-
tion using Eq. (6) requires 10917 Mwords (85 GB), CD/RI-
CCSD using Eq. (13) requires 846 Mwords (6.6 GB). Thus,
for this calculation the data set is almost 13 times smaller in
the case of RI-CCSD.

The number of floating point operations scales as O(N6)
for both CCSD and CD/RI-CCSD. The most significant con-
traction in CCSD,

∑
cd〈ab||cd〉t̃ cdij , and its CD/RI-CCSD

counterpart, Eq. (11), take the same number of flops. In the
latter case, the intermediate P−

ab

∑
P MP

daM
P
cb is formed on the

fly thus reducing overall memory requirements. The CD/RI-
CCSD equations involve fewer O3V 3-type contractions,
leading to a smaller prefactor (4O3V 3 vs. 29

4 O3V 3 in con-
ventional CCSD). While this improvement is offset by the in-
creased number and cost of O(N5) steps, in practical appli-
cations CD/RI-CCSD are superior in terms of floating point
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operations, memory, and I/O, as illustrated by benchmark cal-
culations in Sec. IV.

C. EOM-EE/SF-CCSD equations

In the EOM-CCSD framework, the target excited-state
wave functions are written as follows:45, 48

|�R〉 = ReT̂ |�0〉, (14)

〈�L| = 〈�0|e−T̂ L†. (15)

The operators R and L are linear excitation operators:

R = R0 + R1 + R2 + · · · , (16)

Rn = 1

n!2

∑
rabc···
ijk··· a†ib†jc†k · · · . (17)

In EOM-EE operators, Rn are spin-conserving (Ms = 0 oper-
ators), whereas in EOM-SF they involve changing the spin of
an electron (Ms = −1). The spin-orbital form of the EOM-
CCSD equations is the same in EOM-EE and EOM-SF.45, 49

By introducing a similarity transformed Hamiltonian H̄ :

H̄ ≡ e−T̂ HeT̂ , (18)

the energy and CCSD amplitude equations become

ECC = 〈�0|H̄ |�0〉, (19)

0 = 〈�a
i |H̄ − ECC |�0〉, (20)

0 = 〈�ab
ij |H̄ − ECC |�0〉, (21)

. . .

where ECC is the coupled-cluster energy for the reference
state. Usually both T and R are truncated at the same level,
which is the single (S) and double (D) excitations in this work.
Thus, in the basis of the reference (O), S, and D, we have
⎛
⎜⎝

0 H̄OS H̄OD

0 H̄SS − ECC H̄SD

0 H̄DS H̄DD − ECC

⎞
⎟⎠

⎛
⎜⎝

R0

R1

R2

⎞
⎟⎠ = ω

⎛
⎜⎝

R0

R1

R2

⎞
⎟⎠ ,

(22)

where on the left-hand side ECC only appears for the diago-
nal elements in the diagonal blocks and ω = E − ECC. Be-
cause the right eigenvectors do not form an orthonormal set,
R0 = r01̂ can be present in the target excited states:

r0 = 1

ω
(H̄OSR1 + H̄ODR2)

= 1

ω

{ ∑
ia

F
(2)
ia ra

i + 1

4

∑
ijab

〈ij ||ab〉rab
ij

}
. (23)

Equation (22) is solved by using the generalized David-
son iterative diagonalization procedure,45 which involves the

calculation of the following σ -vectors:

σa
i = ([H̄SS − ECC]R1)ai + (H̄SDR2)ai

=
∑

b

F
(2)
ab rb

i −
∑

j

F
(2)
ij ra

j −
∑
jb

I
(1)
ibjar

b
j +

∑
jb

F
(2)
jb rab

ij

− 1

2

∑
jkb

I
(6)
jkibr

ab
jk − 1

2

∑
jbc

I
(7)
jabcr

bc
ij , (24)

σab
ij = (H̄DSR1)ab

ij − ([H̄DD − ECC]R2)ab
ij

= −P−
ab

∑
k

I
(2)
ijkbr

a
k − P−

ij

∑
c

I
(3)
jcabr

c
i + P−

ij

∑
l

T
(1)
il t ab

j l

+P−
ab

∑
d

T
(2)
ad tbd

ij + P−
ij

∑
k

rab
jk F

(2)
ik

+P−
ab

∑
c

rac
ij F

(2)
bc + P−

ij P−
ab

∑
kc

I
(1)
ickbr

ac
jk

+ 1

2

∑
kl

rab
kl I

(4)
ijkl + 1

2

∑
cd

rcd
ij I

(5)
abcd

+P−
ij

∑
l

T
(3)
il t ab

j l + P−
ab

∑
d

T
(4)
ad tbd

ij . (25)

The I, F, and T intermediates used in Eqs. (24) and (25) are
collected in Tables I and III. Total storage requirements for
computing a σ -vector, including a set of T, R, σ amplitudes
and all the integrals and intermediates, are as follows:

9

8
O4 + 9

2
O3V + 6O2V 2 + 9

2
OV 3 + 9

8
V 4. (26)

Note that multiple sets of R and σ amplitudes are required in
the Davidson procedure for finding the excitation energies.

D. CD/RI implementation of EOM-EE/SF-CCSD

Following the same procedure as in the derivation of the
CD/RI-CCSD equations, we arrive at

r0 = 1

ω

[∑
ia

F
(2)
ia ra

i + 1

2

∑
ijab

( ∑
P

BP
iaB

P
jb

)
rab
ij

]
, (27)

σa
i =

∑
b

rb
i F

(2)
ab −

∑
j

ra
j F

(2)
ij −

∑
jP

MP
ji

(
M2R

jaP +M3R
jaP −M2RT

jaP

)

+
∑
P

M2R
P MP

ia −
∑
kc

(∑
jP

BP
jcM

2R
kjP

)
tac
ik

+
∑
jb

rab
ij F

(2)
jb +

∑
cP

M2R
icP MP

ca, (28)
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TABLE III. I and T intermediates for EOM-CCSD45 and estimated cost to store and compute them (closed-shell case).

Equation Memory Flops

I
(1)
ickb = 〈ic||kb〉 − ∑

d 〈kb||cd〉tdi − ∑
ld 〈kl||cd〉tbd

il + ∑
l

[∑
d 〈kl||cd〉tdi − 〈kl||ic〉]tbl 2O2V 2 3O3V 3

I
(2)
ijkb = 〈ij ||kb〉 − ∑

l I
(4)
ijkl t

b
l + 1

2

∑
cd 〈kb||cd〉t̃ cdij + ∑

d

[∑
lc〈kl||cd〉tcl

]
tbd
ij − ∑

c tbc
ij fkc

−P−
ij

{ ∑
c

[〈kb||jc〉 − ∑
ld 〈kl||cd〉tbd

j l

]
tci + ∑

lc〈kl||jc〉tbc
il

} 3
2 O3V 21

4 O3V 3

I
(3)
jcab = 〈jc||ab〉 − ∑

d I
(5)
abcd tdj + 1

2

∑
kl〈kl||jc〉tab

kl − ∑
l

(∑
kd 〈lk||cd〉tdk

)
tab
j l − ∑

l t
ab
j l flc

+P−
ab

{∑
k

(〈ka||jc〉 − 1
2

∑
l〈kl||jc〉tal − ∑

ld 〈kl||cd〉tad
j l

)
tbk − ∑

ld 〈lb||cd〉tad
j l

} 3
2 OV 3 33

4 O3V 3

I
(4)
ijkl = 〈ij ||kl〉 + 1

2

∑
ab〈kl||ab〉t̃ ab

ij + P−
ij

∑
a〈kl||ia〉taj 3

4 O4 5
8 O4V 2

I
(5)
abcd = 〈ab||cd〉 + 1

2

∑
kl〈kl||cd〉t̃ ab

kl − P−
ab

∑
k〈kb||cd〉tak 3

4 V 4 5
8 O2V 4

I
(6)
klic = 〈kl||ic〉 − ∑

d tdi 〈kl||cd〉 3
2 O3V

I
(7)
kacd = 〈ka||cd〉 − ∑

l t
a
l 〈kl||cd〉 3

2 OV 3

T
(1)
ij = ∑

kc rc
k I

(6)
jkic

T
(2)
ab = ∑

kc rc
k I

(7)
kabc

T
(3)
ij = 1

2

∑
kab〈jk||ab〉rab

ik

T
(4)
ab = 1

2

∑
ijc〈ij ||bc〉rac

ij

σ ab
ij = I

(1i)
ijab + P−

ab

{∑
c

(
T (2)

ac + T (4)
ac

)
tbc
ij +

∑
c

rac
ij F

(2)
bc

−
∑

k

I
(2b)
ijkbr

a
k

}
+ 1

2

∑
kl

I
(4b)
ijkl r

ab
kl

+P−
ij P−

ab

{∑
kd

tad
jk

(∑
P

MP
dbM

2R
kiP + I

(2i)
kidb

)

−
∑
P

MP
ja

( ∑
c

MP
dbr

c
i + M2R

ibP

)
+ I

(3i)
ijab

}

+P−
ij

{∑
k

rab
jk F

(2)
ik +

∑
k

tab
jk

(∑
c

F
(2)
kc rc

i +T
(1)
ik +T

(3)
ik

)}

− 1

2

∑
kl

tab
kl

(
P−

ij P−
kl

∑
P

M2R
liP MP

kj − 1

2
I

(4i)
ijkl

)
, (29)

I
(1i)
ijab = 1

2

∑
cd

(
P−

ab

∑
P

MP
caM

P
db

)
rcd
ij , (30)

I
(2i)
kidb =

∑
lc

( ∑
P

BP
ldB

P
kc

)
rbc
il , (31)

I
(3i)
ijab =

∑
kc

(∑
P

MP
kiM

P
cb

)
rac
jk , (32)

I
(4i)
ijkl =

∑
cd

(
P−

cd

∑
P

BP
kcB

P
ld

)
rcd
ij . (33)

Here again I (1i), I (2i), I (3i), and I (4i) are computed using
the three-tensor contraction procedure and then immediately
added to the result. M, F, T, I (2b), and I (4b) intermediates in
Eqs. (27)–(29) are given Tables II and IV. The intermediates
from Table II are computed once, following a CD/RI-CCSD
calculation, whereas the rest is recomputed at each Davidson
iteration using the most current r-amplitudes.

For the computation of a σ -vector in the Davidson itera-
tive procedure, the storage requirement for CD/RI-EOM-EE

implementation becomes

5

2
O2M + 5OV M + 5

2
V 2M + 3

2
O4 + 3

2
O3V + 21

4
O2V 2.

(34)

For the naphthalene example from Sec. III B, the RI
version of EOM-EE reduces the amount of required mem-
ory by a factor of 24 relative to the canonical implemen-
tation, that is, the conventional EOM-EE, using Eq. (26),
needs 30795 Mwords (241 GB), whereas CD/RI-EOM-EE
(Eq. (34)) uses 1275 Mwords (10 GB). The number of
floating point operations in the σ -vector update procedure

TABLE IV. M and T intermediates for CD/RI EOM-EE-CCSD.

Equation Memory Flops

M2R
iaP = ∑

ld BP
ld rad

il OV M

M2R
P = ∑

ld BP
ld rd

l

M3R
iaP = ∑

c BP
acr

c
i OV M

M2R
ijP = ∑

c BP
icr

c
j O2M

M2R
abP = ∑

k BP
kar

b
k V 2M

M2RT
iaP = ∑

k M2R
kiP tak OV M

T
(1)
ij = ∑

P MP
jiM

2R
P − ∑

kP M2R
jkP MP

ki

T
(2)
ab = ∑

kP BP
kb

(
M3R

kaP − M2RT
kaP

) − ∑
P MP

baM
2R
P

T
(3)
ij = ∑

aP BP
jaM

2R
iaP

T
(4)
ab = ∑

iP BP
ibM

2R
iaP

I
(1i)
ijab (Eq. (30)) 5

8 O2V 4

I
(2i)
kidb (Eq. (31)) 2O3V 3

I
(3i)
ijab (Eq. (32)) 2O3V 3

I
(4i)
ijkl (Eq. (33)) 5

8 O4V 2

∑
kd tad

jk

(∑
P MP

dbM
2R
kiP + I

(2i)
kidb

)
3O2V 2 5O3V 3

∑
kl t

ab
kl

(
P−

ij P
−
kl

∑
P M2R

liP MP
kj − 1

2 I
(4i)
ijkl

) 3
4 O4 5

8 O4V 2
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for both conventional and RI/CD implementations scales as
O(N6). The cost of EOM-EE is 5

8O2V 4 + 3
4O3V 3 + 5

8O4V 2,
whereas RI/CD-EOM-EE takes 5

8O2V 4 + 9O3V 3 + 5
4O4V 2

operations. There is a larger number of O3V 3 contractions in
the latter case, leading to a bigger prefactor. This is the result
of the on-the-fly reassembly of some fourth-order interme-
diates that are stored in memory in the case of conventional
EOM-EE.

E. EOM-IP-CCSD and CD/RI EOM-IP-CCSD

In EOM-IP-CCSD (EOM-CCSD for ionization poten-
tials), the operator R is not particle-conserving:

Rn(N − 1) = 1

n!2

∑
rbc···
ijk···ib

+jc+k · · · . (35)

In EOM-IP-CCSD, R is truncated at the two-hole-one-particle
excitation level. The equations for σ -vectors are as follows:

σi = −
∑

j

F
(2)
ij rj +

∑
jb

F
(2)
jb rb

ij + 1

2

∑
jkb

I
(6)
kjibr

b
jk,

σ a
ij = −

∑
k

rkI
(2)
ijka + P−

ij

∑
k

ra
jkF

(2)
ik +

∑
b

rb
ijF

(2)
ab

−P−
ij

∑
kb

I
(1)
jbkar

b
ik + 1

2

∑
kl

I
(4)
ijklr

a
kl +

∑
b

tab
ij T

(4)
b ,

T (4)
a = 1

2

∑
klb

〈kl||ab〉rb
kl,

where F and I intermediates are collected in Tables I and
III. Memory requirements for the σ update procedure are as
follows:

3

4
O4 + 3O3V + 11

4
O2V 2. (36)

This estimate excludes any three-dimensional quantities, e.g.,
EOM-IP amplitudes.

The CD/RI equations are derived following the same pro-
cedure as in the EOM-EE case. Specifically, we break I (1)

and I (6) into the individual terms and use I (2b) and I (4b) from
Table II instead of I (2) and I (4). The resulting CD/RI equations
are as follows:

σi = −
∑

j

F
(2)
ij rj +

∑
jb

F
(2)
jb rb

ij −
∑
jP

MP
ji

( ∑
kb

BP
kbr

b
jk

)
,

σ a
ij = −

∑
k

rkI
(2b)
ijka + P−

ij

[ ∑
k

F
(2)
ik ra

jk − I
(1i)
jia

+
∑
P

MP
ja

(∑
kb

BP
kbr

b
ik

)
−

∑
lc

tac
j l I

(2i)
ilc

]

+
∑

b

rb
ijF

(2)
ab + 1

2

∑
kl

I
(4b)
ijkl r

a
kl +

∑
b

tab
ij T

(4)
b ,

I
(1i)
ija =

∑
kb

( ∑
P

MP
kjM

P
ba

)
rb
ik,

I
(2i)
ilc =

∑
kb

( ∑
P

BP
kcB

P
lb

)
rb
ik,

T
(4)
b =

∑
kP

BP
kb

( ∑
lc

BP
lc r

c
kl

)
.

T(4), I (1i), and I (2i) are computed using the three-tensor con-
traction. M-intermediates are given in Table II.

The data size for σ -vector update in CD/RI-EOM-IP is
approximately:

3

2
O2M + 2OV M + 3

2
V 2M + 3

4
O4 + 3

2
O3V + 3

4
O2V 2.

(37)

For the naphthalene example, memory savings achieved
by using RI are limited to about 20%, that is, conventional
EOM-IP using Eq. (36) requires 477 Mwords (3.7 GB),
whereas CD/RI-EOM-IP, Eq. (37) needs 382 Mwords
(3.0 GB). The difference in memory requirements is not as
large as in the case of EOM-EE because EOM-IP does not
use the OVVV and VVVV blocks of the ERIs.

The number of floating point operations in the σ -vector
update procedure for both implementations is O(N5). The
CD/RI scheme requires six O(N5)-type contractions, the
dominant contraction being O2V 2M . The canonical EOM-
IP requires two O(N5)-type contractions, the dominant con-
traction being O3V 2. Therefore, the σ -vector update proce-
dure in CD/RI-EOM-IP is expected to be about three times
slower than in canonical EOM-IP; however, some of this cost
increase is offset by more favorable parallel scaling. More-
over, for fair comparison, the calculation of the intermediates
should also be considered.

F. EOM-EA-CCSD and CD/RI EOM-EA-CCSD

In EOM-EA (EOM for electron attachment), the operator
R is

Rn(N + 1) = 1

n!2

∑
rabc···
jk··· a+b+jc+k · · · . (38)

In EOM-EA-CCSD, R is truncated at the one-hole-two-
particles level and the equations for the σ -vectors are as
follows:

σa =
∑

c

F (2)
ac rc +

∑
kc

F
(2)
kc rac

k + 1

2

∑
kcd

I
(7)
kacdr

cd
k ,

σ ab
i = P−

ab

∑
c

F (2)
ac rcb

i −
∑

k

F
(2)
ki rab

k −
∑

c

I
(3)
icabr

c

+ 1

2

∑
cd

I
(5)
abcdr

cd
i + P−

ab

∑
kc

I
(1)
kbicr

ac
k −

∑
k

T
(3)
k tab

ik ,

T
(3)
i = 1

2

∑
kcd

rcd
k 〈ki||cd〉,

where F(2) and I intermediates are given in Tables I and III.
The disk requirements for the EOM-EA σ update procedure
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are estimated at

7

2
O2V 2 + 3OV 3 + 3

4
V 4. (39)

In the CD/RI scheme, we break all I-intermediates from
the above equations:

σa =
∑

c

F (2)
ac rc +

∑
kc

F
(2)
kc rac

k +
∑
dP

( ∑
kc

BP
kcr

cd
k

)
MP

da,

σ ab
i = P−

ab

[ ∑
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F (2)
ac rcb

i − I
(1i)
iab

+
∑
P

MP
ia

(∑
c

MP
cbr

c −
∑
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BP
kcr

bc
k

)]

−
∑
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F
(2)
ik rab

k −
∑
kl
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kl

[∑
P

(∑
c

BP
kcr

c

)
MP

li −I
(2i)
kli

]

+P−
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{∑
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[
I

(3i)
ldb −

∑
P

( ∑
c

BP
lc r

c

)
MP

db

]
tad
il

}

−
∑

l

[∑
c

F
(2)
lc rc+

∑
dP

BP
ld

(∑
kc

BP
kcr

cd
k

)]
tab
il +I

(4i)
iab ,

I
(1i)
iab =

∑
kc

(∑
P

MP
kiM

P
cb

)
rac
k ,

I
(2i)
kli = 1

2

∑
cd

( ∑
P

BP
kcB

P
ld

)
rcd
i ,

I
(3i)
ldb =

∑
kc

(∑
P

BP
kdB

P
lc

)
rbc
k ,

I
(4i)
iab =

∑
cd

(∑
P

MP
caM

P
db

)
rcd
i .

I (1i), I (2i), I (3i), and I (4i) are computed using the three-tensor
contraction. M-intermediates are from Table II.

The storage requirement for CD/RI-EOM-EA σ -vector
update is:

3

2
O2M + 2OV M + 3

2
V 2M + 3

4
O2V 2. (40)

To again illustrate memory savings using the naphthalene
example, conventional EOM-EA using Eq. (39) uses 20408
Mwords (159 GB), whereas CD/RI-EOM-EA Eq. (40) needs
only 360 Mwords (2.8 GB).

Because the most expensive in terms of storage interme-
diates have been eliminated in the CD/RI implementation, the
procedure requires about 57 times less memory.

Similar to EOM-IP-CCSD, the number of floating point
operations for both implementations scales as O(N5). The
dominant O(N5)-type contraction, out of two in canonical
EOM-EA, is the OV 4-type, whereas in CD/RI, which has ten
O(N5)-type contractions, the dominant one is V 4M-type.

IV. BENCHMARKS

The errors introduced by the RI and CD approximations
have been extensively benchmarked for quantities like to-

tal energies, molecular structures, dipole moments, and ex-
citation energies;7, 15, 18, 20, 36, 38–40, 50–54 for a recent review, see
Ref. 19. Total energies have been analyzed for density func-
tional theory,18–20, 36, 50 Hartree-Fock,15, 18–20, 50, 51 and MP2
methods.7, 15, 18–20, 38, 50, 51 Typical errors in absolute energies
are in a millihartree (mEh) range [or 0.01 kcal/(mol-electron)]
for common auxiliary basis sets20, 36, 38 and for CD with a
threshold of 10−4.18, 19, 50

The accuracy in energy differences, such as activa-
tion energies,16 is better by a factor of 2-3 in comparison
to total energies due to error cancellation. The errors in
dipole moments computed with RI38, 39 and CD19 are be-
low 0.01 D and are usually an order of magnitude smaller
that the errors due to the incompleteness of basis sets. The
RI/CD bond lengths are within 0.01 pm from the respec-
tive full calculations.20, 39, 53 Aquilante et al.19 have also re-
ported vertical excitation energies (computed with CASSCF
and CASPT2) that show average errors less than 0.01 eV
and 0.001 eV for thresholds of 10−3 and 10−4, respectively.
The effect of the RI approximation on excitation energies
within an approximate second-order coupled-cluster model,
CC2, has been thoroughly investigated by Köhn and Hättig
who reported errors of 0.01 eV or less.53

In the present paper, we focus mostly on the effect of us-
ing RI/CD representations on energy differences between dif-
ferent electronic states, such as electronic excitation energies
and ionization/electron attachment energies. We also consider
energy differences along potential energy surfaces.

We compare the timings for RI/CD versus canonical im-
plementations and investigate the parallel performance of the
code.55 All calculations were performed on designated bench-
mark nodes. The hardware configuration is Xeon X5675 (2
processors, 6 cores each, 3.0 GHz, 12 Mb cache), 128 GB
RAM, RAID 0 4×600 GB=2.2 TB. This configuration was
referred to as Xeon-USC in our previous benchmark study.34

We use the following test cases:

1. Phenolate form of the anionic chromophore of the pho-
toactive yellow protein (PYPb).56, 57 We perform CCSD
calculations as well as EOM-EE/IP/EA-CCSD. We con-
sider the energy difference between the cis- and trans-
isomers and electronic energy differences between vari-
ous states (electronically excited, electron-attached, and
ionized states). The calculations were performed with
three basis sets — 6-31+G(d,p) (test1), aug-cc-pVDZ
(test2), and cc-pVTZ (test3).

2. Cluster of two methylated uracils and a water molecule
(test4).34 Energy differences between different elec-
tronic states are considered.

3. Tetramer of 4 nucleobases, AATT, from Ref. 58 (test5).
4. Oligoporphyrin dimer used in previous benchmarks34, 59

(test6).
5. Cluster of methylated uracil, mU, and water from

Ref. 60. We focus on the potential energy profiles along
the proton-transfer reaction coordinate.

The following thresholds were used in CCSD and
EOM-CCSD calculations:61 T-amplitudes convergence of |Tn

− Tn−1| ≤ 10−4, energy convergence |En − En−1| ≤ 10−6,
Davidson’s procedure convergence |Rn| ≤ 10−5 (here Rn is the
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TABLE V. Test systems used for benchmarks, converged CCSD correlation energies (hartree), and number of CC iterations.

Name Molecule Formula Symm Nel Basisa # b.f. Ecorr Niter

Test1 PYPbb,c C9O3H7 Cs 86 6-31+G(d,p) 263 −1.838 498 14
Test2 PYPbb,c C9O3H7 Cs 86 aug-cc-pVDZ 363 −1.955 977 14
Test2-fc PYPbb,d C9O3H7 Cs 86 aug-cc-pVDZ 363 −1.875 348 14
Test3 PYPbb,d C9O3H7 Cs 86 cc-pVTZ 489 −2.147 251 14
Test4 (mU)2 · H2Oc C12O5N4H18 C1 158 6-31+G(d,p) 489 −3.334 026 12
Test5 AATTd C20O4N14H22 C1 386 6-311+G(d,p) 968 −5.975 572e 12
Test6 Porphyrind C46N12H26 D2h 272 cc-pVDZ 942 −7.995 344f 11

aReferences 64 and 65 for 6-31+G(d,p), Refs. 66 and 65 for 6-311+G(d,p), and Ref. 67 for cc-pVDZ, cc-pVTZ and aug-cc-pVDZ.
bPYPb: anti-syn conformation.
cCore electrons active.
dCore electrons frozen.
eCalculation using conventional CCSD with RI integrals (direct_ri=true, rimp2-cc-pVDZ38 auxiliary basis set).
fFrom Ref. 59.

Davidson residual), and threshold for subspace expansion in
Davidson’s procedure |Rn| > 10−5. Table V lists parameters
for different benchmark examples. All electrons were active
in test1; test2 was executed with and without frozen core; core
electrons were frozen in test3–test6. In some cases, we also
employed Frozen Natural Orbitals (FNO) approximation.62

All Cartesian geometries and relevant energies are given
in the supplementary material.63 All calculations were per-

formed using regular (i.e., employing non-decomposed ERI)
Hartree–Fock procedure. Correlation energies in Table V are
for canonical calculations (using full ERI) except for test5.

Table VI presents the comparison of the canonical CCSD
calculation and RI/CD approximations. We note that the er-
rors in total CCSD energies for RI and CD/10−3 approxima-
tions are comparable (and are in a millihartree range). How-
ever, the rank of CD/10−3 is often less than that of RI giving

TABLE VI. CCSD errors and wall times (s) using 12 cores.

Name Method Rank CCSD error CCSD wall Ratioa CD wall timeb

Test1 Full 1894
RI/rimp2-aug-cc-pVDZ 1099 8.10 × 10−4 1771 0.94
CD/10−1 135 1.49 × 10−1 1500 0.79 85
CD/10−2 505 1.71 × 10−3 1591 0.84 530
CD/10−3 715 2.74 × 10−4 1642 0.87 978
CD/10−4 1065 8.27 × 10−6 1773 0.94 2035

Test2 Full 9490
RI/rimp2-aug-cc-pVDZ 1099 7.8 × 10−4 5175 0.55
CD/10−3 804 2.1 × 10−3 4750 0.50 2345

Test2-fc Full 2870
RI/rimp2-aug-cc-pVDZ 1099 1.1 × 10−3 2847 0.99
CD/10−3 804 4.2 × 10−4 2626 0.91 2348

Test3 Full 21257
RI/rimp2-cc-pVTZ 1256 1.4 × 10−3 9209 0.43
CD/10−3 1629 1.9 × 10−4 10367 0.49 15491

Test4 Full 110379
RI/rimp2-aug-cc-pVDZ 2067 1.6 × 10−3 85425 0.77
CD/10−3 1335 6.4 × 10−4 88198 0.80 10301
CD/10−3/FNOc 1335 25464 0.15 10392

Test5 Full/rimp2-cc-pVTZ/FNOd,e,f 726.4 h
RI/rimp2-cc-pVTZ/FNOd 3738 699.2 h 0.96
CD/10−2/FNOd 1688 443.6 h 0.61 15.4 h

Test6 Full 4.7 × 10−3 211.0 h
RI/rimp2-cc-pVDZ 3612 4.7 × 10−3 194.9 h 0.92
RI/rimp2-cc-pVDZ/FNOg 3612 63.3 h 0.30

aRatio = time (RI/CD)/time(full) for CCSD iterations.
bWall time for Cholesky decomposition (CD) procedure.
cUsing FNO (see Ref. 62), 99.50% occupation threshold and frozen core (350 active orbitals). CCSD converges in 11 iterations.
dUsing FNO, 99.50% occupation threshold and frozen core (649 active orbitals). CCSD converges in 12 iterations.
eFrom Ref. 34.
fCanonical CCSD calculations using RI integrals (direct_ri=true).
gUsing FNO, 99.50% occupation threshold and frozen core (754 active orbitals). CCSD converges in 16 iterations. Memory settings: test1 — 20 GB, test2 — 50 GB, test3 — 80 GB,
test4 — 48 GB, test5 — 100 GB, and test6 — 100 GB.
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TABLE VII. Wall time per CCSD iteration (s) using 80 GB RAM.

Job 1 core 4 cores 8 cores 12 cores

Full 46405 14278 (×3.25) 9506 (×4.88) 7973 (×5.82)
RI/rimp2-aug-cc-pVDZ 39347 10283 (×3.83) 5539 (×7.10) 4342 (×9.06)
CD/10−3 37330 9889 (×3.78) 4973 (×7.51) 4185 (×8.92)

rise to a more significant speed-up (the situation is reversed
in for test3 which uses the cc-pVTZ basis). We also note that
CD/10−4 leads to the rank comparable to the size of the aux-
iliary basis in RI (1065 versus 1099), but yields two orders
of magnitude more accurate total energies (error 8.27 × 10−6

versus 8.10 × 10−4 hartree).
Overall, RI/CD CCSD calculations are 10%–60% faster

than the canonical implementation. We observe a more sig-
nificant speed-up for larger calculations, e.g., compare test4,
test3, and test2 versus test1, likely because the I/O penalties
are more pronounced for larger jobs. For the same molecule,
we observe more significant speed-up in larger bases (com-
pare test3 versus test2 and test1), because larger bases have
more linear dependencies. Using test4 as an example, we
observe that combination of CD with FNO approximation
leads to a very impressive speed-up, i.e., CD/10−3/FNO
calculation takes only 15% of the time of the full CCSD
calculation.

Finally, let us consider two large examples, i.e., a nu-
cleobase tetramer (AATT)34, 58 (test5, C1 symmetry, 966 ba-
sis functions, and 38 core orbitals frozen) and the oligopor-
phyrin dimer (test6, D2h symmetry, 942 basis functions, and
58 core orbitals frozen)34, 59 and compare them to the canoni-
cal calculations.34 In test5, we also employ FNO approxima-
tion (279 out of 830 virtuals frozen, total 649 active orbitals).
First, we note significant reduction in disk requirements for
both examples (e.g., 382 GB versus 2.8 TB for AATT). For
test6, the first RI/CD CCSD iteration is more than twice faster
than in the canonical implementation (6.33 h for RI CCSD
versus 13.2 h for the canonical CCSD34). However, we ob-
serve a slowdown of the subsequent iterations due to the in-
creasing number of T-amplitudes that need to be handled by
the DIIS procedure. The average time per iteration for oligo-
porphyrin is 12 h (194.9 h total time, 16 iterations), although
the first iteration is two times faster (6.33 h). We also com-
puted oligoporphyrin in combination with FNO (130 out of
749 virtual orbitals frozen, 754 active orbitals) with time for
first iteration 2.35 h and the average time per iteration 3.95 h.
For AATT, we observe a similar speed-up of RI CCSD itera-
tions, the first RI CCSD iteration takes 39 h (to be compared
to 60 h in the canonical implementation34). AATT computed
with CD/10−2 yields a rank of 1688 and the first CCSD itera-
tion takes 28.25 h, to be compared with 60 h in the canonical
implementation and 39 h with RI/rimp2-cc-pVTZ.

A more detailed breakdown of timings for CCSD calcula-
tions is given in Table S1 of the supplementary material.63 As
expected, the evaluation of Eq. (11) takes a significant frac-
tion of time, especially in larger bases (it scales as O2V 4).
Evaluation of Eq. (9), which contains one O3V 3 (third term)

and one O4V 2 (the last term) contractions, is also significant
and becomes dominant in an electron-rich case, test6.

The time used for the decomposition and integral trans-
formation steps is also shown in Table VI. Since the present
implementation of the decomposition algorithm does not use
point group symmetry, the timings for test1–test3 are rela-
tively large. We note that for test4 (C1), the time of decom-
position with a threshold of 10−3 is about 12% of the total
time for CCSD iterations.

We investigate parallel performance using test4
(Table VII). The parallel scaling is improved, e.g., the
canonical implementation shows a factor of 6 speed-up on
12 cores, whereas the RI/CD code is accelerated by a factor
of 9. Thus, the speed-up relative to the canonical CCSD code
becomes more pronounced on 12 cores, e.g., on a single
CPU, RI/CD calculation is about 20% faster, whereas on 12
cores, it is almost a factor of two faster than the canonical
code. This improvement in the parallel performance is due to
the significant reduction of the amount of data handled in the
CCSD calculations.

Table VIII shows EOM energies and timings for test1
and test2; the results for test2-fc and test3 are presented in
Table IX. We note that RI and CD/10−3 give comparable er-
rors in excitation, attachment, and ionization energies, i.e.,
less than 0.01–0.001 eV. These errors are consistent with
those reported for the CASSCF and CASPT2 methods.19 The
errors in the energies are systematically reduced with the
Cholesky threshold decrease from 10−2 to 10−4 for all meth-
ods. We observe that a threshold of 10−2 yields errors of
∼0.03 eV, which is acceptable in many situations and is less
than error bars of EOM-CCSD.

For test1, the timings for RI/CD EOM methods are
slower than of the canonical implementation due to the in-
creased number of contractions, as explained in Sec. III. How-
ever, in a larger basis (aug-cc-pVDZ versus 6-31+G*), the
gap shrinks for EOM-IP (total RI/CD EOM time is almost the
same as of the canonical calculation), and RI/CD EOM-EE
shows 60%–70% speed-up. Further increase of the basis (to
cc-pVTZ) leads to an additional speed-up, i.e., RI/CD EOM-
EE calculations for test3 take 25% of the full EOM-EE time.
This is because the increased number of time-determining
contractions in RI/CD EOM-EE (7 for RI/CD EOM-EE ver-
sus 3 N6 operations in canonical EOM) is offset by the signif-
icantly reduced disk and memory usage by RI/CD EOM that
reduces I/O penalties and improves parallel scaling. For ex-
ample, for test5 (AATT) EOM-EE-CCSD calculations (with
frozen core and FNO) the estimated disk usage is 7.2 TB,
whereas for the corresponding RI/rimp2-cc-pVTZ calcula-
tion it is only 590 GB. For test3, we observe that canonical
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TABLE VIII. EOM-CCSD energies for the 2 lowest states in each irrep and errors in energy differences (eV), and wall times for EOM (s) using 12 cores.

EOM time EOM

Method Inta Iterb Totalc Ratiod callse 1A′ 2A′ 1A′′ 2A′′

Test1
EOM-EE-CCSD 342 3344 3686 46 3.158 eV 4.233 eV 3.860 eV 4.171 eV
RIf 65 6641 6706 1.8 (2.0) 46 1.0 × 10−4 1.0 × 10−4 1.2 × 10−3 1.2 × 10−3

CD/10−2 56 6093 6149 1.7 (1.8) 46 2.8 × 10−2 3.5 × 10−2 2.5 × 10−2 2.0 × 10−2

CD/10−3 59 6276 6335 1.7 (1.9) 46 4.2 × 10−3 6.7 × 10−3 6.5 × 10−3 3.9 × 10−3

CD/10−4 64 6588 6652 1.8 (2.0) 46 2.0 × 10−4 6.0 × 10−4 1.0 × 10−3 9.0 × 10−4

EOM-EA-CCSD 351 486 837 31 3.931 eV 4.329 eV 3.700 eV 5.268 eV
RIf 65 984 1049 1.3 (2.0) 31 1.0 × 10−4 <10−4 1.3 × 10−3 1.0 × 10−4

CD/10−2 56 710 766 0.9 (1.5) 31 1.9 × 10−2 9.8 × 10−3 1.5 × 10−2 2.5 × 10−2

CD/10−3 59 788 847 1.0 (1.6) 31 7.5 × 10−3 5.6 × 10−3 2.5 × 10−3 6.6 × 10−3

CD/10−4 65 975 1040 1.2 (2.0) 31 4.0 × 10−4 1.4 × 10−3 3.0 × 10−4 1.1 × 10−3

EOM-IP-CCSD 93 46 139 26 4.328 eV 6.758 eV 2.735 eV 5.353 eV
RIf 65 132 197 1.4 (2.9) 26 6.0 × 10−4 8.0 × 10−4 1.3 × 10−3 1.1 × 10−3

CD/10−2 57 108 165 1.2 (2.4) 26 1.3 × 10−2 6.9 × 10−3 2.3 × 10−3 2.8 × 10−3

CD/10−3 60 117 177 1.3 (2.5) 26 2.0 × 10−4 1.0 × 10−4 2.0 × 10−4 7.0 × 10−4

CD/10−4 65 132 197 1.4 (2.9) 26 <10−4 <10−4 1.0 × 10−4 <10−4

Test2
EOM-EE-CCSD 20021 39991 60012 49 3.167 eV 4.148 eV 3.349 eV 5.666 eV
RIf 139 18522 18661 0.3 (0.5) 49 1.0 × 10−4 1.0 × 10−4 1.0 × 10−3 1.1 × 10−3

CD/10−3 125 18572 18697 0.3 (0.5) 49 5.0 × 10−4 1.2 × 10−3 2.0 × 10−4 <10−4

EOM-IP-CCSD 245 70 315 26 4.467 eV 6.772 eV 2.904 eV 5.462 eV
RIf 165 211 376 1.2 (3.0) 26 9.0 × 10−4 8.0 × 10−4 1.3 × 10−3 8.0 × 10−4

CD/10−3 159 196 355 1.1 (2.8) 26 9.0 × 10−4 7.0 × 10−4 9.0 × 10−4 8.0 × 10−4

aTime for calculations of the EOM-CCSD intermediates for the Davidson procedure.
bTime for EOM iterations.
cTotal EOM time (intermediates + Davidson iterations).
dRatio = time (RI/CD)/time (full). The first value is the ratio of total EOM times; the ratio for Davidson iterations is given in parentheses.
eσ -vector update calls.
frimp2-aug-cc-pVDZ auxiliary basis.

EOM shows rather poor parallel scaling (CPU 102655 s,
wall 93432 s, ratio=1.09), whereas for RI EOM we see more
than a 10 fold CPU/wall ratio (CPU 228202 s, wall 21553 s,
ratio=10.58), leading to an overall 5-fold speedup of David-

son iterations. Thus, RI/CD implementation of EOM not only
extends the applicability of the method to larger systems
that may not be accessible by canonical EOM-CCSD due to
disk/memory bottlenecks, but also improves timings of the

TABLE IX. EOM-CCSD energies for the 2 lowest states in each irrep and errors in energy differences (eV), and wall times (s) using 12 cores.

EOM time EOM

Method Inta Iterb Totalc Ratiod callse 1A′ 2A′ 1A′′ 2A′′

Test2-fc
EOM-EE-CCSD 4565 6917 11482 48 3.166 eV 4.148 eV 3.344 eV 5.662 eV
RIf 68 9619 9687 0.8 (1.4) 48 1.0 × 10−4 1.0 × 10−4 1.1 × 10−3 1.1 × 10−3

CD/10−3 62 8987 9049 1.3 (2.3) 48 5.0 × 10−4 1.2 × 10−3 2.0 × 10−4 <10−4

Test3
EOM-EE-CCSD 47946 93432 141378 36 3.307 eV 4.333 eV 5.513 eV 5.690 eV
RIg 170 21552 21722 0.2 (0.2) 36 3.0 × 10−4 1.0 × 10−4 4.0 × 10−4 3.0 × 10−4

CD/10−3 194 26839 27033 0.2 (0.3) 36 8.0 × 10−4 9.0 × 10−4 2.6 × 10−3 2.4 × 10−3

EOM-IP-CCSD 426 62 488 26 4.450 eV 6.795 eV 2.872 eV 5.447 eV
RIg 166 214 380 0.8 (3.5) 26 1.3 × 10−3 1.3 × 10−3 1.0 × 10−3 8.0 × 10−4

CD/10−3 189 245 434 0.9 (4.0) 26 1.0 × 10−4 1.0 × 10−4 2.0 × 10−4 3.0 × 10−4

aTime for calculations of the EOM-CCSD intermediates for the Davidson procedure.
bTime for EOM iterations.
cTotal EOM time (intermediates + Davidson iterations).
dRatio = time (RI/CD)/time (full). The first value is the ratio of total EOM times; the ratio for Davidson iterations is given in parentheses.
eσ -vector update calls.
frimp2-aug-cc-pVDZ auxiliary basis.
grimp2-cc-pVTZ auxiliary basis.
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TABLE X. EOM-IP-CCSD energies (absolute errors for RI/CD) and EOM wall times (s) for test4 (two lowest EOM roots).

EOM time EOM

Method Inta Iterb Totalc Ratiod callse State 1 State 2

EOM-IP-CCSD 5088 503 5591 10 8.421 eV 8.858 eV
RIf 1866 576 2442 0.4 10 1.0 × 10−3 1.0 × 10−3

CD/10−3 2083 514 2597 0.5 10 5.0 × 10−4 2.0 × 10−4

CD/10−3/FNOg 541 270 811 0.2 10 1.6 × 10−2 1.5 × 10−2

aTime for calculations of the EOM-CCSD intermediates for the Davidson procedure.
bTime for EOM iterations.
cTotal EOM time (intermediates + Davidson iterations).
dRatio of total times: time (RI/CD)/time (full).
eNumber of calls of σ -update procedure.
frimp2-aug-cc-pVDZ auxiliary basis.
gFrozen core and FNO (threshold 99.50%) was used.

calculations by removing the overheads due to large size of
the data.

The calculation time of the intermediates for EOM calcu-
lations is significantly reduced for all RI/CD methods, as il-
lustrated by test2 timings revealing that the intermediates cal-
culations (dominated by the VVVV block of the transformed
integrals) take almost as much time as Davidson iterations.
Thus, the overall CD/RI EOM-EE timings (Davidson itera-
tions plus intermediates) are considerably faster (3–5 times)
than those of the canonical code when only of few EOM roots
are computed for large systems.

The detailed timings for RI EOM-EE-CCSD calculations
are given in Table S2 of the supplementary material.63 We
observe that σ 2-vector update procedure takes most of total
EOM time (96% for test3). Within it, the calculation of I1i

ijab,
Eq. (30), is dominant (70% of the total EOM time for test3),
as expected based on O2V 4 operations required to evaluate
this term.

Calculations of ionization energies for test4 (Table X)
show the errors of the same order of the magnitude, 0.001
eV and 0.0001 eV for RI and CD/10−3, respectively, as in
the PYPb examples (test1 and test2). Calculations of EOM-IP
σ -vectors with RI/CD are slightly slower than in the canoni-
cal calculations; however, the time required for calculation of
intermediates is significantly smaller for RI/CD, resulting in
more than 2-fold overall speedup. The speed-up for RI/CD
EOM-IP is less than for RI/CD EOM-EE due to smaller
size of the data used by EOM-IP, which does not involve
VVVV and OVVV intermediates; thus, the canonical code
shows much better parallel performance than EOM-EE (for

TABLE XI. Energy differences between PYPb isomers (Eanit−anti

− Eanti−syn, kcal/mol) and the corresponding errors against full CCSD.

Energy Error Error
Method difference (kcal/mol) (hartree)

Full 4.1531
RI/rimp2-aug-cc-pVDZ 4.1507 2.40 × 10−3 3.82 × 10−6

CD/10−2 4.0889 6.42 × 10−2 1.02 × 10−4

CD/10−3 4.1319 2.12 × 10−2 3.37 × 10−5

CD/10−4 4.1540 9.00 × 10−4 1.43 × 10−6

full EOM-IP, CPU 587 s, wall 63 s, ratio = 9.45; for RI EOM-
IP, CPU 2067 s, wall 214 s, ratio=9.70).

Using FNO (threshold 99.5%, 118 virtual orbitals frozen
out of 410 total) significantly improves the total EOM tim-
ings making it more than 6 times faster than the full canonical
calculation. The errors introduced by the FNO approximation
are larger than those due to CD (∼0.01 eV), but they are still
acceptable for most applications. Thus, RI/CD in conjunction
with FNO leads to significant reduction of both memory and
computational cost requirements, with only minor losses in
accuracy.

To quantify the errors in energy differences along po-
tential energy surfaces, we consider two examples. We be-
gin by considering the energy differences between two PYP
isomers57 shown in Table XI. The energy difference between
two PYPb isomers (anti-syn and anti-anti) is 4.15 kcal/mol
at the CCSD/6-31+G(d,p) level of theory. The errors intro-
duced by RI and CD are 2.40 × 10−3 (rimp2-aug-cc-pVDZ),
6.42 × 10−2 (CD/10−2), 2.12 × 10−2 (CD/10−3), and 9.00
× 10−4 (CD/10−4) kcal/mol; the errors are considerably
smaller than the errors in the total CCSD correlation energy
due to error cancellation. Note that even for the crudest CD
threshold (10−2), the error in the energy differences is quite
satisfactory (∼0.1 kcal/mol). The error cancellation effect is
more pronounced for RI where the error in energy differences
is more than 2 orders of magnitude less than the error in the
total energy, whereas for CD the difference is more modest
(about 1 order of magnitude). Thus, in terms of the energy
differences, RI is more accurate than CD/10−3, but is still
slightly less accurate than CD/10−4.

As a more challenging case, we consider scans along
proton-transfer coordinate in ionized mU-H2O cluster from
Ref. 60. Figure 1 shows CCSD and EOM-IP-CCSD energies
along the proton-transfer reaction coordinate computed in the
6-311+G(d,p) basis set. We note that RI features the smallest
errors, both in terms of absolute values (around 10−4–10−5

eV) and in terms of non-parallelity errors (NPEs) (4 × 10−5

and 5 × 10−5 eV for CCSD and EOM-IP-CCSD energies, re-
spectively). This is because the auxiliary basis in RI is atom-
centered and does not depend on geometry.68 CD shows larger
errors along the scan; however, the respective NPEs are small
and do not exceed 0.001 eV for CD/10−3 and 0.0003 eV for
CD/10−4. We note that the range of changes in total energy
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FIG. 1. Top: CCSD (left) and EOM-IP-CCSD (right) energies along the proton-transfer coordinate in mU-H2O. Bottom: Errors of RI/rimp2-aug-cc-pVTZ and
CD approximations.

along this scan is about 2 eV. Smooth behavior of the CD
scans is consistent with small variations of the rank along this
scan, e.g., for CD/10−3 and CD/10−4 the number of Cholesky
vectors is 834±2 and 1188 ±3, respectively.

V. CONCLUSIONS

We present a new implementation of RI and Cholesky
decompositions within the CCSD/EOM-CCSD suite of meth-
ods in the Q-Chem electronic structure package.27, 28 This
implementation eliminates the storage of the most expen-
sive four-index electron repulsion integrals and intermediates,
such as VVVV, OVVV, and OVOV blocks of ERI, leading to
a significant reduction in storage requirements and I/O over-
heads. The number of floating-point operations is reduced for
CCSD; however, it is increased by approximately a factor of
3 in EOM calculations (σ -vectors update) because the trans-
formed integrals and related intermediates, which are com-
puted only once in canonical EOM, need to be reassembled at
each Davidson iteration in the RI/CD implementation. How-
ever, this undesirable increase in computations is offset by
significantly reduced I/O overheads. In a shared-memory par-
allel setting the reduction of I/O also leads to better CPU
utilization and improved parallel scalability. When the cal-
culation of the intermediates is included, the ratio between
RI/CD and canonical EOM-EE timings is about 0.3–0.5 for
moderate-size basis sets. The gains are more significant in
large bases, e.g., a RI EOM-EE-CCSD/cc-pVTZ calculation
takes only 15% of the time required for the full calculation.

Additional computational savings can be achieved by com-
bining RI/CD and FNO approaches.62

The accuracy of RI/CD implementations is benchmarked
with an emphasis on energy differences, such as excitation
energies. In agreement with previous benchmarks based on
the CASSCF, CASPT2, and CC2 methods,19, 53 we observe
that the errors in energy differences are smaller than the er-
rors in total energies due to error cancellation. Typical errors
in the CCSD correlation energy are less than a millihartree for
the RI approximation with RI-MP2 auxiliary bases; however,
the respective EOM errors are less than 0.001 eV. The ac-
curacy of CD can be controlled by a single threshold. For a
threshold of 10−4, which results in a rank similar to RI, the
errors in total energies are two orders of magnitude less than
for RI; however, the errors in energy differences are roughly
the same. This threshold is therefore recommended when high
accuracy is required. We note that errors in excitation energies
are quite small when using thresholds of 10−2 and 10−3 (less
than 0.04 and 0.008 eV, respectively); therefore, these thresh-
olds can be used in most calculations.

This paper presents our first step towards developing
reduced-scaling CC/EOM-CC codes. While the present im-
plementation does not reduce scaling of the calculations, it
affords significant computational savings thus extending the
applicability of these methods to larger systems. In order
to achieve further gains, additional steps should be taken.
Among promising strategies19 are a tensor hyper-contraction
approach,21, 22 local correlation schemes, and pair natural
orbitals,25, 26, 69, 70 as well as reduced-rank representations of
the CC/EOM amplitudes.23, 24, 71, 72
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