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A production-level implementation of equation-of-motion coupled-cluster singles and doubles
(EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing
potential (CAP) is presented. The new method enables the treatment of metastable states within the
EOM-CC formalism in a similar manner as bound states. The numeric performance of the method
and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-
electron basis set are investigated. A protocol for studying molecular shape resonances based on the
use of standard basis sets and a universal criterion for choosing the CAP parameters are presented.
Our results for a variety of 7* shape resonances of small to medium-size molecules demonstrate that
CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treat-
ment of resonances and is often able to reproduce experimental results. © 2014 AIP Publishing LLC.
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. INTRODUCTION

Metastable electronic states are important in diverse
areas of science and technology ranging from high-energy
applications (plasmas, attosecond and X-ray spectroscopies)
to electron-molecule collisions (interstellar chemistry, radi-
olysis, DNA damage by slow electrons). These states (called
resonances) can be accessed when molecules are excited
above their ionization threshold, via electron attachment to
closed-shell species, or by core ionization.

A concise and pedagogical introduction to the topic as
well as references to earlier reviews can be found in Ref. 1.
From the quantum mechanical point of view, resonance states
belong to the continuum part of the spectrum and, therefore,
their wave functions are not Lz-integrable. Yet, their wave
functions bear certain resemblance to the bound states within
the interaction region (i.e., close to the nuclei). Using bound-
ary conditions for the outgoing wave (Siegert or Gamow for-
malism, see Ref. 1), one arrives at the following form of the
resonance wave function:

W(x, 1) =e Egp(x) = e e Elpp(x), (1)

where the phase-isolated part ¢,(x) resembles a bound-state
wave function in the interaction region and Ej and I" (real and
imaginary parts of the complex energy £ = E, — i['/2) de-
termine resonance position and width. The latter is inversely
proportional to the resonance lifetime. Thus, the resonances
appear as solutions of the Schrédinger equation with com-
plex energy.'™ One can arrive at the same concept of complex
energy via a completely different formalism (Feshbach ap-
proach) based on a separation of the Hamiltonian into coupled
bound and continuum parts; in this approach, the resonance
is described as a bound state coupled to the continuum, and
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the complex energy emerges from solving a non-Hermitian
eigenproblem with an effective Hamiltonian.

One can avoid the inconveniences of working with con-
tinuum functions or fiddling with boundary conditions by
reformulating the problem using complex variables.>* The
most rigorous approach is the complex-scaling formalism>°
in which all coordinates are scaled by a complex num-
ber e~; however, practical applications of this method are
limited by its extreme sensitivity to the one-electron ba-
sis set’!" as well as conceptual difficulties regarding the
separation of nuclear and electronic motions of the scaled
Hamiltonian.'>"1

These problems are avoided in an alternative approach in
which the original (non-scaled) Hamiltonian is augmented by
a complex potential —inW devised to absorb the diverging
tail of the resonance wave function.'®"!3 In the complete ba-
sis set limit, these complex absorbing potential (CAP) meth-
ods yield exact resonance positions and widths in the limit of
zero CAP strength 1.!? It can be shown that CAP methods are
related to exterior complex scaling methods.??!

The use of CAPs in practical calculations is complicated
by possible reflections leading to false resonances, sensitivity
of the results to the form of the CAP W, and a strong ba-
sis set dependence.'®?? Furthermore, one has to determine an
optimal value for 1, which is usually achieved by calculating
trajectories E(n) and requiring |n d E /dn| = min.

In terms more familiar to electronic structure practition-
ers, reflections can be described as perturbations of the res-
onance wave functions and, consequently, energies caused
by a finite-strength CAP. Finite basis sets give rise to ad-
ditional reflections. Several reflection-free CAPs have been
proposed;'*?3 such CAPs are either energy-dependent or
non-local.

© 2014 AIP Publishing LLC
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In our previous paper,”* we introduced a simple density-
matrix based correction to the energy that removes the pertur-
bation due to the CAP. The correction was derived based on
energy decomposition analysis and response theory. Our start-
ing point was the observation that the energy’s dependence on
n becomes roughly linear beyond some critical value of 1. By
analyzing the response equations, we also proposed an alter-
native criterion for finding an optimal value for . Physically,
our approach is grounded in the behavior of the resonance
wave function and, ultimately, the one-particle density matrix.
It was shown?* that when the CAP is sufficiently strong, both
real and imaginary parts of the density become near-stationary
indicating that the resonance is stabilized. Then the pertur-
bation to the resonance position by the CAP can be elim-
inated by subtracting the term n Tr[y W] from the energy.
The optimal 7 is found by considering the de-perturbed reso-
nance energies; moreover, we argued that 7, is not the same
for real and imaginary parts.>* Preliminary benchmarks illus-
trated that this approach results in a computationally more
robust scheme in which the dependence on the onset of the
CAP is significantly reduced compared to the straightfor-
ward application of a CAP along with the original energy-
based criterion for finding the optimal 5, as was done in
most CAP applications.”>~>” We note that Moiseyev et al.?%%°
also observed a linear energy dependence on 1 beyond some
critical value of n and proposed the use of Padé approxi-
mants to extrapolate the energy of the stabilized resonance
to the zero n limit. If the energy depends strictly linearly
on 7, their approach yields results identical to our first-order
correction.

One of the difficulties of understanding the capabilities
and limitations of different approaches is that a method that
has shown excellent performance for a small model problem
may fail when applied to a realistic system. In the context of
electronic structure, the results of calculations of resonances
will also be affected by the quality of standard approximations
such as the incompleteness of one- and many-electron basis
sets.? Thus, it is important to test different methods for meta-
stable states within robust and accurate ab initio approaches.
For bound states, the coupled-cluster (CC) and equation-of-
motion (EOM) hierarchies of methods?!—? provide a reli-
able and predictive set of theoretical model chemistries.*
These methods can be systematically improved to approach
the exact solution, are size-extensive (size-intensive for ex-
citation energies), describe dynamical and non-dynamical
correlation in one computational step, and do not involve
system-dependent parameterization. The CC hierarchy of
methods works best for wave functions dominated by a single
Slater determinant, however, the EOM-CC approach extends
this single-reference formalism to tackle various open-shell
and multi-configurational cases.’>%’

In EOM-CC, the target-state wave function is described
by an excitation operator R acting on the reference-state CC
wave function

W) = Rel |0) )

where |0) is the reference Slater determinant — usually satisfy-
ing the Hartree-Fock (HF) equations — and T is the coupled-
cluster operator. Different choices of R provide access to
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different target states, e.g., in EOM-EE-CC R is electron
and spin-conserving thus enabling the description of vari-
ous excited states. Open-shell electron-attached states (such
as temporary anions) can be described by EOM-EA-CC in
which the reference state is again a well-behaved closed shell
state and the operator R changes the number of electrons.
Likewise, ionized states can be described by EOM-IP-CC
with the operator R removing an electron. Thus, EOM-CC is
a natural choice for extending the excited-state methodology
to resonances via complex scaling and CAP approaches.

Recently, we presented an implementation of complex-
scaled EOM-CC singles and doubles (EOM-CCSD) meth-
ods and illustrated their performance by considering several
atomic systems (He, H™, Be). Here, we present an implemen-
tation of CAPs within the EOM-CC family of methods. Our
main focus is on the EOM-EA-CC variant; however, our im-
plementation also includes EOM-EE-CC. While limited im-
plementations of CAPs within EOM-CC have been reported
before (e.g., Refs. 25 and 26), this work presents the first for-
mally complete and production-level implementation of the
method.

The main focus of the paper is on investigating the nu-
meric performance of the method and the sensitivity of the re-
sults towards the CAP parameters and the choice of basis set.
Our goal is to develop a black-box approach that could be cal-
ibrated and then applied to the calculation of resonances with-
out any prior knowledge of the system, as advocated by John
Pople.® In particular, we want to avoid the system-dependent
optimization of basis sets and the CAP’s shape and onset.
Thus, rather than aiming at results converged with respect to
all computational parameters individually for each system, we
wish to establish a uniform protocol that can be applied to any
system and can be characterized by error bars estimated from
prior calibration studies, as routinely performed in electronic
structure calculations.*”

We note that the validation of the accuracy of computed
resonance lifetimes in molecular systems is difficult.®® A
complete theoretical description should involve coupled elec-
tronic and nuclear dynamics; this is beyond the scope of the
present paper, where we only compute the lifetime of the reso-
nance state at a fixed molecular geometry. This is appropriate
for resonances whose lifetimes are short relative to nuclear
motions, or when nuclear motions do not strongly affect the
computed I values (Condon-like approximation). Thus, our
focus is on the comparison with other theoretical studies and
the robustness of the results with respect to the one-electron
basis set as well as variations of the CAP parameters.

In this context, we add that the sensitivity of the results to
the one-electron basis set is of a fundamentally different ori-
gin in CAP calculations as compared to complex scaling. In
the latter case, the basis should be sufficiently flexible to de-
scribe the resonance wave function at different values of the
scaling angle, whereas in the former case, one simply needs
to supply a basis set of a sufficient spatial extent to repre-
sent a given CAP and a stabilized resonance wave function.
This implies that the diffuseness of the basis must be coordi-
nated with the CAP onset, e.g., in a compact basis, the CAP
onset should be smaller, otherwise, the calculation will be
blind to the CAP. Thus, although the basis-set dependence is a
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nuisance, its simpler nature in CAP calculations suggests that
a solution can be found.

Originally, CAP methods were introduced to study shape
resonances. Since the decay of Feshbach resonances is a two-
electron process (and the CAP is a one-electron operator),
one may expect difficulties in describing Feshbach resonances
within the CAP formalism. Moiseyev et al.>**' showed that
additional steps need to be taken for the construction of
reflection-free CAPs in order to reliably calculate Feshbach-
type resonances. The present paper focuses solely on under-
standing CAPs in the context of molecular shape resonances.

The article is structured as follows: Secs. II and III
present the formalism of the CAP-augmented EOM-CC
method and our implementation. In Sec. IV, we put forward
a protocol for determining the resonance positions and life-
times and investigate its robustness towards the choice of the
one-electron basis set and the CAP’s onset. In Sec. V, we sub-
sequently apply our new scheme to a variety of molecular res-
onance states and compare the results to those obtained from
experiment as well as using other theoretical approaches.
Sec. VI provides concluding remarks.

Il. THEORY

The basic idea of the CAP method'®' is the addition of
an artificial complex potential to the original Hamiltonian

H(p) = H - inW, 3)

where W aims to absorb the outgoing electron and 7 controls
its strength. As in complex scaling,>*!!:4? the addition of the
CAP results in a non-Hermitian complex symmetric opera-
tor H(n)'® converting resonances into square integrable (L?)
wave functions. In our calculations, we choose the CAP as a
quadratic potential with an unaffected region of cuboid (i.e.,
box) shape

W=W,+W,+ W, @)

W, =0if|r,| <r,
= (ra — rg)2 if |r,| > rg, 5)

with r, denoting the three Cartesian coordinates (« = x, y,
2). Thus, the CAP is controlled by 4 parameters: 3 parameters
for the onset in each direction (r, ), r?) and the strength 7.
In principle, the CAP strength is unbound (n € [0, 00)), but
should be chosen such that the effect is large enough to absorb
the wave function over a certain range, but not too large to
prevent excessive perturbation of the wave function and the
resonance energy.'”

In the complete one-electron basis set, the exact position
of the resonance in the complex plane can be obtained as
lim77 N 0E(n).16 That is, an infinitesimally weak CAP, which
is represented exactly (and, therefore, goes to infinity at large
r), is sufficient to stabilize the resonance without perturb-
ing it. Working with finite Gaussian basis sets requires one
to perform series of calculations for different n in order to
find an optimal value of the strength parameter 7, along
the n-trajectory and the corresponding value of the resonance
energy E(,,). A commonly used criterion for determining
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the optimal value of the strength parameter n is finding the
minimum of the logarithmic velocity'® !°

IE(m)
U—an .

v(n) = (6)

Unfortunately, the position and width of the resonance
computed using this criterion are very sensitive to the CAP
onset!7-?%27; thus, this approach does not provide a black-box
scheme. In our recent paper,’* the first-order deperturbative
correction to the raw zeroth-order resonance energies EX and
E! was introduced as

UR(m) = EX() — nTely (W1, 7

U'(m) = E'(n) + nTely " p W1, ®)

with y(n) as the one-particle density matrix. The correction
is based on perturbation theory; it removes the explicit de-
pendence on the CAP from the computed resonance energies.
As was illustrated in Ref. 24, the corrected energies, UR(i)
and U'(n), exhibit nearly constant behavior for large 7 (that
is, past the stabilization point, when the resonance wave func-
tion does not change much anymore); furthermore, the cor-
rected trajectories computed using different CAP onsets be-
come much more similar in the asymptotic region as opposed
to the uncorrected trajectories, EX(n) and E/(n).

By looking separately at the real and imaginary parts of
the deperturbed energy (UR and U) as a function of 7, we
showed that the energy becomes near stationary at certain val-
ues of optimal strength (nX and n/) giving the position and
lifetime of the resonance. Our results showed that this recipe
leads to values for the resonance position and lifetime that are
less sensitive to the CAP onset and thus more robust than the
zeroth-order values EX and E'.>*

In our scheme, the CAP is introduced at the HF level of
theory, where we obtain a set of complex molecular orbitals
(MOs) as the solution for a given strength 1. Hence, a com-
plex Koopmans’ theorem holds for the virtual orbitals, i.e.,
they can be interpreted as zeroth-order approximations of the
resonance and rotated continuum states.

As the next step, we solve the CCSD equations for the
reference state?!:3%43-45 using H(n)

(@, le " Hme" ) = (P, [HMIP) =0 (9

with @, denoting the excited determinants. The resulting am-
plitudes ¢ are also complex.

To compute electronically excited and electron-attached
resonance states, we use EOM-EE-CCSD and EOM-EA-
CCSD?**46-30 methods that provide accurate and predictive
descriptions for such target states. The wave function of the
resonance state is found by solving a non-Hermitian eigen-
value problem for the right eigenvectors

(@, |(A() — EL)R"|®,) = RIQ" (10)

which yields a set of complex amplitudes R" and complex
excitation energies €27. The latter are the raw, n-dependent
resonance energies (which are equal to the difference between
the total energy of the excited/attached EOM-CCSD state and
the reference CCSD energy for a given 7).
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We note that for moderate CAP strengths and CAP onsets
comparable with the spatial extent of the electron density of
the reference state, the perturbation to the reference CCSD
energy is small (10> a.u.) in contrast to complex-scaled
calculations.!! To compute the first-order correction to the
raw resonance energies, the one-electron density matrix needs
to be calculated. We employ an unrelaxed one-electron EOM-
CCSD density matrix containing no amplitude- or orbital-
response terms”'!

l _Tn n 7
VoD = 5 (®IL7e™ " {pTq +q T pte" R'0), (1D

where L" and R" are the left and right EOM-CCSD eigenvec-
tors, respectively.

Because of the non-Hermitian nature of H left eigenvec-
tors have to be computed and biorthogonalized against the
right eigenvectors in order to compute the density matrix

(®o|L"(H(n) — EX)|D,) = Q"L (12)

(L,'|Rj):8,'jv (13)

where i and j denote different electronic states. Once the den-
sity matrix is computed, the energy of the resonance state is
corrected according to Egs. (7) and (8).

The equations for CAP-CCSD and CAP-EOM-EE/EA-
CCSD are identical to the original CCSD and EOM-EE/EA-
CCSD equations except that all quantities such as the Fock
matrix, the two-electron integrals, the MO matrix C, the T
and R/L amplitudes are now complex and n-dependent. There
is no need to add the CAP explicitly to the CCSD or EOM-
CCSD equations since it is already included at the HF level.

In our paper on complex-scaled EOM-CC,!! we con-
sidered several variants of implementation, including one in
which the HF and CCSD equations for the reference state
were solved for the unscaled Hamiltonian and the scaling was
introduced only at the EOM-CC level. This required signif-
icant reformulation of the EOM-CC equations. By analogy,
one may also consider an implementation of CAP-EOM-CC
in which the CAP is introduced only at the EOM-CC level;
this will be the subject of future work.

Due to the CAP, the Hamiltonian becomes non-Hermitian
and complex symmetric, which necessitates using a different
metric, the so-called complex symmetric scalar product (c-
product),'%42:32:53 guch that the variational principle is main-
tained

wa=fm%w (14)

The difference to the regular scalar product is that the bra-
vector is not complex conjugated. Mathematically, the c-
product is a pseudoscalar product which does not induce a
valid metric norm.*>3% However, one can still define the c-
norm (f|f) which is, contrary to the regular norm, complex
in general and might become zero for a non-zero function f
(“self-orthogonality’)

(f|f)= <fre|f)e>_<flm|f1m> + 21<frg|flm> = |a|el¢ e C,
15)
where (|) is a regular scalar product which is equivalent to the
c-product for real functions. Thus, the normalization of all
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vectors (for example, left and right EOM-CC eigenvectors) is
done by multiplying by a complex number*?

f=lal"2e (16)

resulting in f being a normalized vector. As mentioned above,
use of the c-norm may lead to “self-orthonormality” ((f]f)
= 0 for f # 0), but this has not been observed in practice.
Orthogonality is defined for the c-product in the same manner
as for the scalar product as (f|g) = 0 (c-orthogonality).

lll. IMPLEMENTATION

The suite of CAP-EOM-CC methods has been imple-
mented in the Q-Chem electronic structure package>*>> and
was released in version 4.2. All complex CCSD and EOM-
EE/EA-CCSD equations were implemented using the libten-
sor library>® for high-performance tensor operations.

The calculations begin by solving the CAP-augmented
restricted HF equations (CAP-RHF). CAP-RHF has been im-
plemented as an extension of regular RHF using the object-
oriented SCF library SCFman®’ in Q-Chem that employs the
Armadillo linear algebra library>® for matrix computations.
We add that an adaptation of our implementation for CAP-
UHF will be straightforward. The CAP is introduced as an
additional term in the regular Fock matrix

Fly = FQ, —inW,,. (17)

The molecular orbitals must satisfy the following orthonor-
malization condition in the c-product metric:

(cnHrscn =1, (18)

where S is the overlap matrix in the atomic orbital (AO)
basis and (C")T is transposed but not conjugated. Since the
augmented Fock matrix F7 is non-Hermitian, the orbitals
obtained using standard linear algebra routines for the diago-
nalization of general matrices are not normalized. In order to
satisfy the orthonormality condition [Eq. (18)], the MOs are
orthogonalized by using a modified Gram-Schmidt procedure
with projections calculated using the c-product.

The Fock matrix F,f\, and the two-electron integrals
(uv]|ro) are transformed into the MO basis by applying
the complex orbital transformation matrix, CZ,,; thus, these
quantities become complex in the MO basis. The calcula-
tions proceed by solving the CCSD amplitude equations us-
ing a DIIS procedure® adapted for complex algebra with
c-product. Once the complex r-amplitudes are converged, we
find the excited-state energies and right eigenvectors by us-
ing Davidson’s procedure® generalized for non-Hermitian
complex matrices. Note that the original A matrix is also
non-Hermitian but real, thus, one only needs to modify the
procedure to make it work with complex quantities and the
c-product. We observe that for large values of 5 the con-
vergence of Davidson’s procedure is sometimes problematic,
likely due to more pronounced non-Hermiticity. However,
we were always able to converge a reasonable number of
roots (2-10) by tweaking the parameters of Davidson’s proce-
dure such as subspace size, residual inclusion threshold, etc.
Since the one-electron density matrix is needed for the cal-
culation of the first-order correction to the energies, we also
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solve for the left eigenvectors using Davidson’s procedure, as
well as for left and right eigenvectors together to ensure their
c-biorthogonality [Eq. (13)].

The CAP is evaluated in the AO basis through numerical
quadrature using a Becke-type grid®' of (99, 590) points (99
radial points and 590 angular points per radial point). Cur-
rently, we have implemented a shifted quadratic potential (»
— ro)2 for a rectangular cuboid [Eqgs. (4) and (5)], but our im-
plementation allows for an easy extension of the shape of the
unaffected region as well as the type of potential, e.g., higher
order monomials (r — r,)*, (r — r,)°, etc. Our implementa-
tion also includes the optional addition of a real potential to
the CAP, as was advocated in Ref. 41.

Relative to the conventional CCSD and EOM-CCSD
methods, the addition of the CAP does not change the scaling
of the computational cost [O(N®) for CCSD and EOM-EE-
CCSD, O(N°) for EOM-EA-CCSD] or the memory require-
ments [O(N*)]. However, because we need to work with com-
plex numbers, the computational cost increases roughly by a
factor of 4 and the storage requirements increase by a factor of
2. Furthermore, computation of the first-order energy correc-
tion requires the left eigenvectors, which increases the com-
putation time relative to EOM-CCSD energy calculations.
Another possible issue arises when the resonance state is lying
high in energy, so that the standard Davidson procedure has
to find all lower roots that might require a lot of iterations to
converge. To solve this issue, we have implemented iterative
solvers for interior eigenstates for conventional EOM-CCSD
methods. Implementation of the interior eigenvalue solvers
for CAP-EOM-CCSD methods is a subject of future work. Fi-
nally, the necessity to compute n-trajectories requires to run
calculations for different values of 7, but these calculations
can be performed independently and can therefore be run in
parallel.

IV. BENCHMARK CALCULATIONS

The necessity to find optimal values for the strength and
the onset of the CAP as well as a pronounced basis set de-
pendence of the results have precluded routine applications of
CAP-based methods so far. Hence, investigating the numeric
performance of CAP-EOM-CCSD, in particular with respect
to the two aforementioned issues, is crucial for it to become a
useful tool for studying resonances.

As for the one-electron basis set, it has been established
that the straightforward application of standard basis sets
yields poor results. Additional diffuse functions need to be
incorporated for two reasons: (i) to obtain a sufficiently good
basis-set representation of the CAP and (ii) to describe the
outgoing electron correctly.'®!*%2 Owing to these require-
ments, CAP-based computations were often carried out using
non-standard basis sets.?®27-92-%7 While such approaches are
able to provide results that agree with experiment for some
resonance states, a treatment based on standard basis sets not
involving any optimization procedure would be superior as it
is of black-box type, has predictive power, and is also compu-
tationally less demanding. Since the shape of the resonance
wave function is similar to a bound-state wave function in the
interaction region, it should be possible to lessen the basis-set
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dependence to the degree observed in regular EOM-CCSD
calculations.

Concerning the choice of the CAP onset, one has to
realize that the artificial nature of the CAP implies that it
is impossible to deduce from basic physical laws a univer-
sally applicable procedure for finding optimal parameters for
the CAP strength, onset, and shape. While this is unsatis-
fying from a formal point of view, a pragmatic approach
is to mitigate the dependence of the physically meaning-
ful results on the artificial parameters as much as possible.
Along these lines, we introduced a first-order correction®*
that was shown to desensitize resonance positions and widths
to the choice of onset parameters by removing the pertur-
bation due to the CAP. However, as this dependence can-
not be removed completely, one has to develop a proto-
col for the unique and system-independent choice of the
CAP onset to make CAP-EOM-CCSD applicable in a routine
manner.

A. Computational details

In the following, we examine the m* shape resonances
of CO™ and C,H, using different basis sets and CAP on-
sets. Both states arise from adding an electron to the lowest
unoccupied valence MO (LUMO) of the respective neutral
molecule. Bond lengths and angles were chosen as R(CO)
= 2.1316 a.u. for carbon monoxide and R(CC) = 2.5303 a.u.,
R(CH) = 2.0522 a.u., and /(CCH) = 121.2° for ethylene. All
electrons were active in the correlated calculations. The CAP
strength n was varied with a step size between 0.0001 a.u. and
0.001 a.u. Optimal values for n were determined according
to the criterion from Eq. (6) as well as using the procedure
outlined in Ref. 24. The respective results are referred to as
zeroth-order and first-order in all tables and in the discussion
below.

The basis sets used in our calculations were derived from
the aug-cc-pVXZ (X =D, T, Q, 5) series®® through augmenta-
tion by additional even-tempered basis functions. In all cases,
the exponents for the first additional basis functions were ob-
tained as one half of the exponent of the most diffuse ba-
sis function with the same angular momentum in the parent
aug-cc-pVXZ basis set. The exponents for the remaining ad-
ditional basis functions were calculated as one half of the ex-
ponent of the preceding function.

We explored two different series of basis sets, namely,
one where we augmented the basis sets for all atoms ex-
cept hydrogen (denoted as (A) below) and one where we
placed only one set of diffuse functions with averaged expo-
nents in the center of the molecule (denoted as (C) below).
Since the second approach is computationally less demand-
ing, it is especially preferable when targeting larger systems.
To ensure that this strategy does not give rise to artifacts, we
computed EOM-EE-CCSD excitation energies for a number
of bound excited states of CO and C,H, using the aug-cc-
pVTZ+3s3p3d(C) and aug-cc-pVTZ+3s3p3d(A) bases. The
results are reported in Table I together with the corresponding
values for (R?), which are helpful in distinguishing valence
states from Rydberg states. As apparent from Table I excita-
tion energies computed with the two basis sets differ by not
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TABLE I. EOM-EE-CCSD excitation energies and expectation values (R”)
for several excited states of CO and C,H, computed using the aug-cc-pVTZ
basis set with additional diffuse basis functions placed at all heavy atoms (A)
or at the center of the molecule (C).

aug-cc-pVTZ aug-cc-pVTZ

+3s3p3d(A) +3s3p3d(C)
Molecule State (R?) (a.u.)? E (eV) E (eV)
co 214, 7.8 10.961 10.961
414, 1537 12.559 12597
11B, 414 8.625 8.626
C,H, 2'A, 152.0 8.445 8.446
1'B, 116.7 9.791 9.791
1'B 118.7 7.392 7.392

lu

“The corresponding values for the ground states are 40.0 a.u. for CO and 83.3 a.u. for
C,H,.
2'4

more than 0.04 eV for the very diffuse 4 ' A, state of CO and
by just 0.001 eV for all other states. This shows that placing
the additional diffuse functions in the center does not lead to
inferior results for the bound excited states and thus suggests
the application of this scheme to resonances. We note that a
similar scheme has been employed before in the context of
stabilization techniques.®® 7"

As for the choice of the CAP onset, we employed the
square roots of the expectation values (a?) (¢ = x, y, z) for
the ground states calculated at the CCSD level of theory as a
starting point and considered the impact of small variations.
The values used are 70 = rY =2.76 a.u. and r{ = 4.97 a.u.
for CO and r? = 7.10 a.u., r;) = 4.65 a.u., and r? =340a.u.
for C,H,. The orientation of the molecules was as follows:
For CO, the z-axis formed the molecular axis, whereas the
C,H, molecule was placed in the xy-plane with the CC bond
oriented along the x-axis.

J. Chem. Phys. 141, 024102 (2014)

B. The impact of the CAP onset

Table II compiles resonance positions E, and widths I"
for the 2I1 resonance of CO~ and the 2B2g resonance of C,H}
obtained using the aug-cc-pVTZ+-3s3p3d(C) basis and differ-
ent CAP onsets. We started with the aforementioned values
for rJ based on the spatial extent of the ground-state wave
function and then varied r?, 7, and 0 independently. In ad-
dition to Ey and I', we report optimal CAP strengths as well
as values for the norm of the CAP in the AO representation.
As expected, the representation of the CAP becomes more
complete for smaller values of 2. In addition, the results for
|W||, the Frobenius norm of the CAP matrix, show that the
onset parameters are not all of the same importance: Consis-
tent with the 7* character of the resonance states, r? makes
the largest impact for C,H; and r? = r? for CO™. This trend
is also reflected in all values for Nopts Eg, and I': Varying the
pivotal onset parameter by £0.5 a.u. shifts zeroth-order val-
ues for E by up to 0.028 eV and zeroth-order values for I' by
up to 0.048 eV, while the impact of the remaining onset pa-
rameters is roughly one order of magnitude smaller. Thus, in
the remaining discussion we will focus on the onset parameter
with the most pronounced influence.

Table II shows that both zeroth-order and first-order res-
onance positions and widths become smaller when increasing
rQ, but we emphasize that these fluctuations are mitigated, es-
pecially for the width, when considering first-order results:
Here, E, and T" are both shifted by at most 0.025 eV upon
variation of r0. Also, it is apparent from Table II that smaller
values for the CAP onset lead to smaller Nopt and that the first-
order correction always entails larger values for n,,. How-
ever, the relevance of the latter trends is debatable as the CAP
strength 7 is not a physically meaningful quantity. One can ar-
gue along the same lines regarding the quantity n - dE/dn that
needs to be minimized to find the optimal value for n when
using the conventional criterion from Eq. (6). As can be seen

TABLE II. Dependence of resonance positions Ey, and widths I" of the 2 resonance of CO~ and the 2B2g resonance of C,H, on the onset of the CAP. Values

for n opt? (n -dE/dn) n=y > and ||W|| are also reported. All values computed at the CAP-EOM-EA-CCSD/aug-cc-pVTZ+-3s3p3d(C) level of theory.
opt
Relative CAP onset? Zeroth-order values First-order values
Ard /A /AP (au.) Eg (eV) T (eV) Moy (8:0) 9 (au) Eg (eV)° T (V) ey (au.) Mgt (a.0.) W]l (a.u.)
CO—, 211 resonance
0.0/0.0/0.0 2.088 0.650 0.0028 0.0017 1.981 0.585 0.0054 0.0048 241.9
0.5/0.5/0.0 2.061 0.612 0.0036 0.0021 1.956 0.573 0.0066 0.0060 214.0
—0.5/-0.5/0.0 2.113 0.691 0.0022 0.0011 1.999 0.591 0.0044 0.0040 274.2
0.0/0.0/0.5 2.087 0.644 0.0030 0.0017 1.981 0.582 0.0056 0.0050 235.4
0.0/0.0/—-0.5 2.091 0.654 0.0028 0.0015 1.980 0.591 0.0052 0.0046 249.6
C,H,, szg resonance
0.0/0.0/0.0 2.091 0.430 0.0046 0.0023 2.032 0.328 0.0060 0.0085 272.0
0.5/0.0/0.0 2.089 0.434 0.0045 0.0023 2.032 0.330 0.0054 0.0089 266.7
—0.5/0.0/0.0 2.093 0.427 0.0046 0.0019 2.031 0.328 0.0054 0.0083 278.3
0.0/0.5/0.0 2.095 0.429 0.0050 0.0022 2.033 0.330 0.0057 0.0087 260.5
0.0/—0.5/0.0 2.093 0.431 0.0046 0.0019 2.032 0.326 0.0054 0.0083 285.4
0.0/0.0/0.5 2.088 0.388 0.0071 0.0020 2.023 0.301 0.0070 0.0109 255.3
0.0/0.0/—0.5 2.106 0.478 0.0037 0.0025 2.039 0.353 0.0042 0.0068 291.2

2A value of 0.0 refers to r) =

¢Computed as Frobenius norm.

(@?), @ = x, y, z. 0.5/0.5/0.0 means, for example, that 70 = \/(x2) 4+ 0.5, r
PIdentical to U and —1/2 U from Egs. (7) and (8).

0
v

=V +05,r) = /().
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TABLE III. Resonance positions £ and widths I" as well as values for Topt and |W/|| for the 2IT resonance of CO~ and the 2B2 resonance of C,H,
computed by CAP-EOM-EA-CCSD using the aug-cc-pVTZ basis set with different augmentation. The variations reported for £, and I refer to the change of
these quantities upon varying the most important CAP onset parameter by 0.5 a.u. (see Sec. IV B).

Zeroth-order values

First-order values

Basis set Eg (eV) I (eV) Tope (aU.) Ep (eV)? I (eV)? n&e (@u)  pby@u)  IW] @u)®
CO~, 211 resonance
aug-cc-pVTZ 251740013 0482 +0.120  0.0180 L 0.252 + 0.020 L.c 0.0660 12.1
aug-cc-pVTZ + 35(C) 251740013 0469 +0.120  0.0190 ..c 0.215 + 0.021 C 0.0585 493
aug-cc-pVTZ + 65(C) 251840014 0468 +£0.012  0.0190 L L C C 412.0
aug-cc-pVTZ + 353p(C) 2.025+0.015 0.549 £0.024  0.0024  1.825+0.004  0.357 £ 0.009 0.0082 0.0048 2295
aug-cc-pVTZ + 656p(C) 202340017 0.551+£0.023  0.0024  1.830+0.004  0.364 + 0.008 0.0082 0.0048 1078.3
aug-cc-pVTZ + 3s3p3d(C) 2.088 +0.026 0.650+£0.040  0.0028  1.98140.022  0.585+0.012 0.0054 0.0048 2419
aug-cc-pVTZ + 656p6d(C) 2.1124+0.027 0.665+0.055  0.0034  2.015+0.025  0.555 £ 0.057 0.0048 0.0340 1441.8
aug-cc-pVTZ + 3s3p3d3f(C)  2.081 £0.028 0.654 4+ 0.043  0.0030  1.969 +0.022  0.588 + 0.015 0.0056 0.0050 243.7
aug-cc-pVTZ + 3s3p(A) 2.1024+0.024 0.604 £0.050  0.0034  1.961+0.016 0.446 £ 0.0026  0.0098 0.0066 505.9
aug-cc-pVTZ + 353p3d(A) 2.060 +£0.022 0.885+0.022  0.0016  1.969+0.025 0474 £0.032 0.0026 0.0305 541.0
CZHZ, szg resonance
aug-cc-pVTZ 24334 0.4794 0.0380 24119 0.1404 0.0880 0.1610 11.8
aug-cc-pVTZ + 3s(C) 2.433¢ 0.479¢ 0.0383 24114 S 0.0878 .© 51.9
aug-cc-pVTZ + 353p(C) 242240.024 0495+0.012 00370  2.41040.007  0.208 £ 0.030 0.1200 0.1700 253.5
aug-cc-pVTZ + 656p(C) 24194 0.4944 0.0360 2.4094 0.2224 0.1250 0.1690 1429.0
aug-cc-pVTZ + 353p3d(C) 2.091+0.015 0.430+£0.046  0.0046  2.032+0.009  0.328 £ 0.027 0.0060 0.0085 272.0
aug-cc-pVTZ + 656p6d(C) 1.9764 0.5634 0.0013 2.0434 0.3344 0.0076 0.0100 2014.7
aug-cc-pVTZ + 3s3p3d3f(C) 2.0884 0.4414 0.0046 2.0284 0.3344 0.0051 0.0085 274.0
aug-cc-pVTZ + 3s3p(A) 2108 £0.018 0.420 £0.045  0.0049  2.017£0.007  0.305 £ 0.030 0.0110 0.0085 502.8
aug-cc-pVTZ + 3s3p3d(A) 23024+ 0.043 0.536+£0.096  0.0245  2.18040.008  0.373 £ 0.050 0.0370 0.0290 539.2

Identical to U and —1/2 U’ from Egs. (7) and (8).

>Computed as Frobenius norm.

“No stationary point could be located in the range 0 <n < 0.2.

dWe did not vary the CAP onset in calculations using these basis sets.

from Table I1, trends in - dE/dn are weakly pronounced and
not uniform.

C. The role of diffuse basis functions

To analyze the convergence of resonance positions and
widths with respect to the addition of diffuse basis functions,
we studied the * resonances of CO™ and C,H, using differ-
ent augmentations. The results are summarized in Table III.
The crucial role of the angular momentum of the additional
basis functions becomes clear at the first glance: In the case of
CO7, ajump of almost 0.5 eV is observed for the zeroth-order
resonance position when going from aug-cc-pVTZ+3s(C) to
aug-cc-pVTZ+3s3p(C), while an additional augmentation by
three sets of d-functions leads to a change of 0.06 eV. Three
sets of f-functions on top of aug-cc-pVTZ+3s3p3d(C) shift
E, by just 0.007 eV. For the resonance width, d-functions
play a more important role: Going from the 3s(C) to the
3s3p(C) augmentation changes I' by 0.08 eV and the next
step to 3s3p3d(C) changes I by 0.10 eV, but the value for
3s3p3d3f(C) differs from that for the preceding augmentation
by just 0.004 eV.

For C,H,, the changes are in general of similar magni-
tude as for CO™, but the big jump is observed when adding
d-functions for both E; and I". We add that similar trends
are found for the first-order E; and I' of both resonance
states. Also, we note that the use of basis sets with an aug-

mentation including just s-functions (for CO™) or just s- and
p-functions (for C,H,) entails much larger ,, values and
sizable differences between zeroth-order and first-order val-
ues. Finally, the importance of the angular momentum of the
diffuse basis functions is also reflected in the E(n) trajectories
for C,H, displayed in Figure 1. Their shape is altered consid-
erably when d-functions are added, but is very insensitive to
the addition of p-functions or f-functions. The role of angu-
lar momentum can be easily related to the spatial symmetry
of the resonance states thus allowing us to choose the aug-
mentation scheme based on symmetry considerations prior to
the actual computations. In addition, we note that the values
of |W|| show that basis functions with angular momentum
higher than £ = 2 do not significantly improve the basis-set
representation of the CAP.

We also investigated the effect of adding more than three
additional diffuse s, p, and d-functions. The corresponding
results in Table III show that, while values for |W]| be-
come considerably larger indicating a more complete basis-
set representation of W, the impact on resonance positions
and widths does not exceed 0.035 eV except for one case: For
C,H}, the zeroth-order E, and I' calculated using the aug-
mentation schemes 3s3p3d(C) and 6s6p6d(C) differ by more
than 0.1 eV. However, this discrepancy disappears when the
first-order correction is applied. These results suggest that
an accurate basis-set representation of the CAP near the in-
teraction region is crucial for obtaining correct resonance
positions and widths, whereas regions further away do not
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FIG. 1. Real (right) and imaginary (left) parts of E and U as a function of the CAP strength parameter 7 for the 2IT ¢ fesonance of C,H,. All values computed
by CAP-EOM-EA-CCSD/aug-cc-pVTZ with different additional diffuse functions. e refers to zeroth-order values, X to first-order values.

need to be covered by the basis set. Furthermore, since an
increased dependence of E and I' on the CAP onset is
found in some cases, we conclude that it is neither nec-
essary nor advisable to employ more than three additional
sets of diffuse basis functions with the required angular
momentum.

Table III also reports the results from calculations with
the aug-cc-pVTZ+3s3p(A) and aug-cc-pVTZ+3s3p3d(A)
bases. Contrary to what we observed for bound states (cf.
Table I), the differences between values for E, and I" ob-
tained with the two augmentation schemes “C” and “A” are
not negligible. Zeroth-order values differ by up to 0.23 eV
and first-order values still by up to 0.15 eV. In one case,
namely, C,H, /aug-cc-pVTZ+3s3p, discrepancies of 0.4 eV
are found; this is probably related to the poor performance
of the 353p augmentation scheme for C,H; discussed earlier.
We consider results obtained with the scheme “C” superior
for several reasons: From the trajectories shown in Figure 2,
one can see that the first-order quantities UF and U’ enter the
region of near-stationarity for smaller 7, i.e., the resonance
wave function shows faster convergence with respect to 7,
which is reflected in smaller 7, values obtained in calcula-
tions using the augmentation scheme “C.” Also, an increased
dependence on the CAP onset is found in some cases when
using scheme “A.”

-78.380 . . . ;
3
-78.385 |*
=t
5 278390
=
= w5 P, e
e - .
s - Re(E)/C
78400 % w * Re(E)/A
o x Re(U)/C
« Re(U)/A
-78.405 ' ' 1
0.000 0002 0004 0006 0008  0.010
n/a.u.

D. The role of the valence basis set

Besides the impact of additional diffuse functions, vari-
ations in the valence basis set also influence Ej, and I". This
is illustrated by Table IV, which reports values for resonance
positions and widths of the *IT resonance of CO™ and the *B,,
resonance of C,H, computed using the aug-cc-pVXZ (X =D,
T, Q, 5) bases augmented according to the 353p3d(C) scheme.
Concerning the resonance position, one can see that for both
zeroth-order and first-order values the basis-set dependence
is more pronounced than for excitation energies correspond-
ing to bound states of the neutral molecules. The position of
the resonance state in CO™ changes by 0.06 eV when going
from aug-cc-pVQZ to aug-cc-pV5Z, whereas the largest shift
observed for a bound state is less than 0.03 eV. We also note
that the positions of the resonance states become smaller with
increasing basis-set size, while the opposite is true for the ex-
citation energies of the bound Rydberg states.

Concerning the resonance width, trends are less clear. For
CO~, both zeroth-order and first-order values show a non-
monotonic behavior with respect to the basis-set size and no
convergence is observed. The magnitude of the variations in
I" is however comparable to that in Ej. For C,H; in contrast,
the dependence of I" on the basis-set size is much less pro-
nounced and convergence seems to be reached. We also see

0.000
-0.005 f2
=
<
= -0.010
a 0.
E x X
= A - Im(E)/C
-0.015 | X x&x(xx « Im(E)/A T
« Im(U)/C
« Im(U)/A
-0.020 L L L
0.000 0.002 0.004 0.006 0.008 0.010
n/a.u.

FIG. 2. Real (right) and imaginary (left) parts of E and U as a function of the CAP strength parameter 7 for the 2IT ¢ fesonance of C,H,. All values computed
by CAP-EOM-EA-CCSD/aug-cc-pVTZ+-3s3p3d(C) and aug-cc-pVTZ4-353p3d(A), respectively. e refers to zeroth-order values, X to first-order values.
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TABLE IV. Resonance positions Ej and widths I" as well as values for Mopt for the 2T resonance of CO™ and the

2B2  resonance of C,H; computed by CAP-EOM-EA-CCSD using different valence basis sets. For comparison
EOM-EE-CCSD excitation energies for several bound states of CO and C,H, are reported as well.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pvVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) +3s3p3d(C)
211 resonance of CO~
Eg (Oth order) (eV) 2.303 2.088 1.987 1.926
I" (Oth order) (eV) 0.727 0.650 0.696 0.804
Topt (a.u.) 0.0046 0.0028 0.0020 0.0015
Eg (1st order) (eV)* 2.182 1.981 1.851 1.762
I (1st order) (eV)* 0.667 0.585 0.673 0.604
n(’fpt (a.u.) 0.0175 0.0054 0.0062 0.0034
n(’,p[ (a.u.) 0.0100 0.0048 0.0046 0.0028
Bound states of CO
EQ2 1Al) €eV) 10.777 10.961 11.021 11.046
E#4 1Al) eV) 12.446 12.597 12.642 12.663
E(1 lB2) V) 8.703 8.626 8.612 8.608
2B2  Tesonance of C,Hy
E (Oth order) (eV) 2.191 2.091 1.988
I (Oth order) (eV) 0.436 0.430 0.447
Topt (a.u.) 0.0032 0.0046 0.0025
Ej (1st order) (eV)* 2.230 2.032 1.903
I (1st order) (eV)?* 0.302 0.328 0.373
n{fm (a.u.) 0.0210 0.0060 0.0054
népt (a.u.) 0.0248 0.0085 0.0043
Bound states of C,H,
EQ2'A) V) 8.315 8.446 8.493
E(l ]Blg) (eV) 9.681 9.791 9.830
E(1'B,) (eV) 7.279 7.392 7.436

]dentical to UR and —1/2 U’ from Egs. (7) and (8).

that the dependence of both E, and I' on the CAP onset is
somewhat mitigated when increasing the size of the valence
basis set: For the aug-cc-pVDZ basis set, a decrease of r? and
r¥ by 0.5 a.u. increases Ey and I of the *IT resonance of CO™
by 0.032 eV and 0.073 eV, respectively, whereas the same de-
crease leads to changes of just 0.025 eV and 0.026 eV when
using the aug-cc-pVQZ basis. This should be contrasted with
the opposite impact of additional diffuse functions discussed
before. Table IV also shows that the values for 7, decrease
for larger basis sets, which is in line with that 5, should be
zero in the complete basis set limit.'

To gain further insight into the dependence of E, and I
on the size of the valence basis set, we performed an energy
decomposition analysis for the 2IT resonance of CO~ and the
2B2g resonance of C,H; based on the following partition of
the electronic Hamiltonian:

. 1
H = Eye+ ) Fplplal+7 ) (pqlirs) plq'sr. (19)

rq pqrs

one—electron part two—electron part

where the CAP is considered as a part of F,, and (pql||rs)
stands for the two-electron integrals in MO basis. The ex-
pectation value of the one-electron part is then interpreted
as one-electron energy, whereas the expectation value of the
remainder represents the contribution from the EOM-EA-
CCSD two-particle density matrix. The results are compiled

in Table V. For the real part of the energy, this illustrates that
the one-electron part converges significantly faster to the com-
plete basis-set limit than the two-electron part, which suggests
that the overall slow convergence of the total energy is mainly
driven by an incomplete treatment of electron correlation. In
contrast, for the imaginary part of the energy, the one-electron
and two-electron parts seem to diverge in opposite directions
with a basis set increase. This holds true for both molecules,
but whereas the trends roughly cancel out for C,H, , this is not
the case for CO™ leading to a seemingly different behavior for
the overall resonance width of the two systems.

One might be tempted to relate the basis set dependence
of I' to an insufficient description of the interaction of the res-
onance state with the continuum, but we point out that the ad-
dition of further diffuse functions has only little impact on E
and I" (cf. Sec. IV C), which suggests the opposite. In sum, we
feel that the behavior of I" requires further investigation in or-
der to develop a scheme for the extrapolation to the complete
basis set limit, but such an extension is beyond the scope of
the present article. We point out, however, that the variations
in I" observed for CO™ do not exceed 0.15 eV so that reliable
computations are still possible based on our current approach.

V. APPLICATIONS

In this section, we will report resonance positions and
widths for a number of shape resonances of small to
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TABLE V. Energy decomposition analysis for the real and imaginary parts of the energies?® of the 2IT resonance
of CO™ and the 2B2  Tesonance of C,H, computed by CAP-EOM-EA-CCSD using different valence basis sets.

J. Chem. Phys. 141, 024102 (2014)

All values in atomic units.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +353p3d(C) +3s3p3d(C) +3s53p3d(C)
211 resonance of CO~
Total energy (real) —112.9835 —113.0979 —113.1573 —113.1805
One-electron part (real)® —112.5652 —112.5920 —112.6078 —112.6167
Two-electron part (real) —0.4183 —0.5059 —0.5495 —0.5638
Total energy (imaginary) —0.0136 —0.0121 —0.0129 —0.0148
One-electron part (imaginary) —0.0479 —0.0485 —0.0559 —0.0725
Two-electron part (imaginary) 0.0343 0.0364 0.0430 0.0577
2B2g resonance of C,H’
Total energy (real) —78.2836 —78.3881 —78.4333
One-electron part (real)® —177.8614 —177.8781 —77.8935
Two-electron part (real) —0.4223 —0.5100 —0.5399
Total energy (imaginary) —0.0080 —0.0080 —0.0082
One-electron part (imaginary) —0.0289 —0.0318 —0.0389
Two-electron part (imaginary) 0.0209 0.0238 0.0307

see values in Table IV.

2Evaluated at the respective Nopt>

YIncluding nuclear repulsion energy.

medium-size molecules and compare the results from our
CAP-EOM-EA-CCSD scheme to those obtained using other
theoretical approaches or through experiment. Systems in-
cluded in this study are N,, CO~, C,H;, C,H,, CH,07,
CO;, and C,H; . All these resonance states except for the last
one are derived by electron attachment to the 7* LUMO of
the corresponding neutral molecules. C,Hg (1,3-butadiene) is
a special case as its 7 system extends over more than a single
double bond, which results in two low-lying resonance states.

We add that only the real part of the resonance wave func-
tion has a well defined single-attachment character, while the

imaginary part has a considerably different form. Most often,
it exhibits multiconfigurational character represented by sev-
eral single attachments to very diffuse orbitals. Also, its de-
pendence on the CAP strength is more pronounced than that
of the real part. A detailed investigation of this phenomenon
will be conducted in future work.

In all calculations, we employed the scheme developed
in Sec. IV, i.e., we chose the CAP onset based on the spatial
extent of the ground-state wave function and used the aug-cc-
pVXZ+3s3p3d(C) bases. Computational details are compiled
in Table VI.

TABLE VI. Computational details of CAP-EOM-EA-CCSD calculations on N, , CO™, CZH; s CzHZ’ CHZO_, CO, , and C4Hg .

Molecule Leading configuration in the Bond lengths (in bohr) CAP onset (in bohr)
(state) real part of the wave function and angles (in degrees) Orientation 0 rg rd
Ny (lo g)2(1au)2(2ag)2(2ou)2 R(NN) = 2.0740 z-axis = molecular axis 2.76 2.76 4.88
(1°11,) CEMECEHUCE I
CcO~ (16)*(20)*(30)%(40)? R(CO) = 2.1316 z-axis = molecular axis 2.76 2.76 497
(121 (50)*(1m)*2m)!
C,H; (lo g)z(lau)z(ZU g)z(zau)z R(CC) =2.2733 z-axis = molecular axis 3.20 3.20 6.35
(1 an) (30g)2(171u)4(171g)] R(CH) = 2.0088
C,Hy (la*(1b,,)*(2a,)*(2b,, ) R(CC) = 2.5303 z-axis L molecular plane 7.10 4.65 3.40
(1°B,,) (16,2 (a,*(1b3,)*(1b3,)*(1by,)" R(CH) = 2.0522 x-axis = CC bond

/(CCH) = 121.2
CH,0~ (1a,)*(2a,)*(3a,)*(4a,)* R(CO) =2.2771 z-axis = CO bond 3.85 2.95 6.10
(12B)) (1b,)%(5a,*(1b,)%(2b,)*(2b,)! R(CH) = 2.0995 y-axis L molecular plane

/(HCO) = 121.9
co; (1o ,)*(10,)*(20 )*(20 )*(30 )° R(CO) =2.1978 z-axis = molecular axis 3.33 3.33 9.57
(1%m) 1(;1!,)4(3%)2(4ag)2(1ng)4(2nu)1
C,Hy 16.20 7.25 4.65
(1%A) (core)?(6b,)*(Ta g)z(lau)z(lb g)z(zau)la b
(1°B,) (core)*(6b,)*(Ta,)*(1a,)*(1b,)*(2b,)'*

A(core)? = (1b,)*(1a,)*(2b, *(2a, ¥ (3a, *(3b,)*(4a,)*(4b, )*(5b,)*(5a }*(6a, .

PCartesian coordinates of symmetry-unique nuclei in bohr: C(1.15735915, 0.76277974, 0.0), C(3.48113356, —0.22898634, 0.0), H(0.92483778, 2.80751355, 0.0), H(3.78431564,

—2.26062161, 0.0), H(5.15268958, 0.95838430, 0.0).



Zuev et al.

J. Chem. Phys. 141, 024102 (2014)

TABLE VII. Resonance positions E, and widths I" for the zl'lg resonance state of N, obtained using different

methods.

Method Eg (V) I' (eV)
Stieltjes imaging technique/special basis set® 2.23 0.40
Schwinger variational method/ADC(3)/(11s8p3d)/[5sTp3d]° 2.534 0.536
Complex scaling/HF-SCF/Dunning’s (9s5p)/[5s3p]+2d+(5p2d)/[3p2d]+4p6d° 3.19 0.44
Complex scaling/MR-CI/Dunning’s (9s5p)/[553p]+1d+10p¢ 1.38 0.414
Complex scaling/%3 decouplings of the e~ -propagator/[4s9p]° 2.11 0.18
Stabilization method/MR-CI/ Dunning’s (9s5p)/[5s3p]+3p2d-+4s1p1d(C)f 2.62 0.45
Stabilization method/MR-CI/6-31+G*+3p# 2.34 0.51
Stabilization method/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s2pTd4g(C)" 2.36 0.42
Stabilization method/CIS/aug-cc-pVTZ+3p! 3.77 1.14
Stabilization method/TDDFT(HFE_PBE)/aug-cc-pVTZ4-3p! 3.078 0.54
Stabilization method/EOM-EA-CCSD/aug-cc-pVTZ+-3p! 2.58 0.570
Stabilization method/EOM-EA-CCSD/aug-cc-pVQZ+3p! 2.49 0.502
Stabilization method/EOM-EA-CCSD/aug-cc-pV5Z+3p' 2.49 0.496
CAP/static exchange/[5s10p13d] (Oth order) 3.888 1.363
CAP/static exchange/[5s10p13d] (1st order) 3.776 1.199
CAP-HF-SCF/(1157p2d)/[5s4p2d] 3.28 0.395
CAP-DFT(LSD/XC)/(1157p2d)/[5s4p2d]* 3.39 0.506
CAP-MRCI/Dunning’s (9s5p)/[5s3p]+(12p)/[9p]+2d' 297 0.65
TCAP-MRCI/Dunning’s (11s6p)/[5s3p]+7p3d2f™ 242 0.45
CAP-X(ADC(2))/TZP+9p2d2f" 2.58 0.55
CAP-FSMRCC/TZ(7p2d)° 2.52 0.39
CAP-CIP/TZ(7p2d)P 2.28 0.482
CAP-EOM-EA-CCSD/(1158p3d)/[5sTp3d]+3p4 2.07 0.42
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (Oth order)" 2.487 0.417
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)" 2.571 0.255
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (Oth order)" 2.508 0.364
CAP-EOM-EA-CCSD/aug-cc-pVQZ+-3s53p3d(C) (1st order)" 2.478 0.286
Estimate via Feshbach projection formalism based on experimental data® 2.32 0.41

2See Ref. 83.
bSee Ref. 84.
“See Ref. 81.
dSee Ref. 10.
¢See Ref. 82.
See Ref. 69.
£See Ref. 79.
hSee Ref. 70.
iSee Ref. 80.
iSee Ref. 16.
kSee Ref. 27.
ISee Ref. 63.
MSee Ref. 62.
"See Ref. 64.
°See Ref. 65.
PSee Ref. 66.
9See Ref. 26.
"This work.

SSee Ref. 89.

A. 211, resonance in N;

The scattering of slow electrons by the N, molecule
has been studied experimentally several times’'”’® so
that the zl'Ig resonance of N, is rather well character-
ized. Consequently, this resonance has served as a testing
ground for numerous theoretical approaches including sta-
bilization techniques,®®7%7%-80 methods based on complex
scaling,lo’gl’82 CAP-based schemes,!®-26-27:62-66 a5 well as
other approaches.?*%5 Among various aspects, the impact of
electron correlation on the resonance position and width® as
well as their basis-set dependence®®%>% have been investi-
gated in detail. In addition, the resonance wave function has

been studied over a wide range of different bond lengths and
adiabatic excitation energies have been determined.!%80.86.87
The potential interplay of the 2IT ¢ ground state of N, with
other resonance states has been also investigated.'%-83
CAP-EOM-EA-CCSD results obtained for the resonance
position and width are compiled in Table VII together with
several values available from the literature. The optimal CAP
strengths found in our calculations are 0.0015 (0.0037) a.u.
for the zeroth-order result and 0.0119 (0.0025) a.u. and
0.0148 (0.0071) a.u. for the real and imaginary part of the
first-order result obtained with the aug-cc-pVTZ+353p3d(C)
(aug-cc-pVQZ+3s3p3d(C)) basis set. We refrained from
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including experimental results in Table VII except for the
fixed-nuclei estimate by Berman et al.® (E, = 2.32 eV,
I' = 0.41 eV), which is usually considered as the refer-
ence value in previous theoretical studies. We add that this
value was derived through a fit to the experimental data using
Feshbach’s projection operator formalism.

Table VII illustrates that a confusing plethora of val-
ues for the resonance position and width of the Zl'lg state

of N; have been reported. One can see that our CAP-
EOM-EA-CCSD results overestimate Ej, relative to the value
from Ref. 89, while I" is underestimated. For our highest-
level calculation (first-order CAP-EOM-EA-CCSD/aug-cc-
pVQZ+353p3d(C)), the deviation is about 0.15 eV for Ej,
and 0.13 eV for I'. For Ej such a deviation is generally con-
sidered acceptable for EOM-EA-CCSD when dealing with
bound states. An assessment of the deviation in I" is more
difficult as a comparison to bound states cannot be made. The
differences between our highest-level value and the rest of the
results show however that the basis-set size and the correc-
tion for the CAP potential both make a sizable impact on Ej,
and I", but whereas these effects work in the same direction
for the resonance position, the change in I' is more involved.
As for the first-order correction, the results obtained within
the static-exchange approximation'® exhibit trends similar to
those observed in the present study.

Table VII also shows that most approaches yield too high
values for the resonance position, whereas the reference value
for the resonance width from Ref. 89 was often surprisingly
well reproduced. The impact of electron correlation is illus-
trated by the comparison of high-level correlated methods to
lower levels of theory. The position of the resonance state
is consistently calculated to be above 3 eV with HF, den-
sity functional theory (DFT), and CIS (configuration inter-
action singles) based methods, regardless of whether stabi-
lization techniques, complex scaling, or CAPs are employed,
while the use of correlated methods leads to a significantly
better agreement with the reference value. The only notable
exception is the complex-scaled MRCI (multireference con-
figuration interaction) result (1.38 eV) from Ref. 10, which
is almost 1 eV below the reference value. Interestingly, CAP-
augmented MRCI calculations® with a rather similar basis set
yielded a quite different resonance position (2.97 eV).

Compared to its effect on the resonance position, the
role of electron correlation for the width I' is less clear. For
example, the complex-scaled HF and CAP-HF calculations
from Refs. 81 and 27 agree with the reference value within
0.03 eV and 0.015 eV, respectively, while some correlated
calculations led to deviations of more than 0.2 eV.%3 In fact, it
was stated explicitly®? that several values reported in the liter-
ature might have benefitted from error cancellation. We note
that most authors reported values for I' that were higher than
the reference value with some low-level approaches overesti-
mating the width by a factor of more than two, whereas our
calculations underestimated I".

Regarding the basis-set dependence, a comparison be-
tween different schemes is hampered by the fact that a
variety of different basis sets has been used in previous stud-
ies. Bearing in mind our findings from Sec. IV D, it seems
justified to conclude for CAP-based methods that basis-set
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effects may account at least partly for the differences be-
tween values for I' reported by different authors. In ad-
dition, the results from Ref. 80 suggest that, as compared
to our CAP-augmented EOM-EA-CCSD scheme, the stabi-
lization method combined with EOM-EA-CCSD leads to a
somewhat faster convergence with respect to basis-set size.
However, the highest-level (aug-cc-pV5Z+3p) results ob-
tained with the latter method (E, = 2.49 eV, I' = 0.496 eV)
still show a sizable deviation from the reference values.

B. 2II resonance in CO~

While we have employed the 2IT resonance of CO™ as a
test system in Sec. IV, we will consider it in this section with
a different focus, i.e., we will compare our results to those
obtained using other methods. In contrast to N, which has
been studied frequently, comparatively few results have been
reported for the isoelectronic CO™,2+26:70,82.90-93 Taple VIII
compiles the values available from the literature together with
some representative values from Sec. IV.

Regarding the resonance position, Table VIII shows that
most theoretical values are higher than the experimental value
(1.50 eV)"®%* as in the case of N5 . Also, similar to N5, the
resonance position is clearly overestimated in the static ex-
change approximation, in which electron correlation is ne-
glected. Furthermore, CAP-EOM-EA-CCSD results obtained
using different bases vary by up to 0.75 eV, which demon-
strates the sizable impact of the basis set. We note, however,
that our results obtained using the aug-cc-pVXZ+3s3p3d(C)
bases approach the experimental value with growing basis-
set size and that the first-order correction improves the reso-
nance position with respect to experiment. Our highest-level
result (1.762 eV, first order, aug-cc-pV5Z+3s3p3d(C) ba-
sis set) deviates from the experimental value by less than
0.3 eV.

The available values for the resonance width of CO~
differ by more than an order of magnitude as again illus-
trated by Table VIII. The largest value reported (1.65 eV)
was obtained in the static exchange approximation, while
the narrowest width (0.08 eV) was computed from the X?
decouplings of the electron propagator, a pattern that is again
similar to N5 . The CAP-EOM-EA-CCSD results for the res-
onance width from the present work and Refs. 24 and 26 vary
by up to 0.68 eV, which illustrates once more the great in-
fluence of the basis set. The first-order correction improves
the resonance width considerably with our highest-level result
(0.604 eV, first-order, aug-cc-pV5Z+3s3p3d(C)) differing by
0.204 eV from the experimental value. However, we finally
note that the experimental values for the resonance position
and width of CO™ from Ref. 94 are not strictly comparable
to the fixed-nuclei extrapolation for N, from Ref. 89, which
further complicates a rigorous assessment of the accuracy of
theoretical approaches.

2 ; -
C. “II, resonance in C,H;

C,H; is a relatively well studied system and a num-
ber of theoretical?®30-82.95-97 a5 well as experimental”®~!%3
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TABLE VIII. Resonance positions £y and widths I" for the 211 resonance state of CO™~ obtained using different

methods.

Method Eg (eV) I' eV)
Boomerang model® 1.52 0.80
Close coupling method” 1.75 0.28
T-matrix/static exchange/(9s5p1d)/[4s3p1d]° 34 1.65
Complex scaling/%? decouplings of the e~ propagator (real SCF)/4s5p9 1.71 0.08
Complex scaling/? decouplings of the e~ propagator/4s5p® 1.65 0.14
Stabilization method/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s4pTd5f(C) 2.02 0.35
CAP-EOM-EA-CCSD/4s5p(C)+4s5p1d(0O)# 1.32 0.12
CAP-EOM-EA-CCSD/maug-cc-pV(D+d)Z+3p# 1.42 0.44
CAP-EOM-EA-CCSD/aug-cc-pVTZ4-353p(A) (1st order)! 1.954 0.433
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (Oth order)! 2.088 0.650
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)! 1.981 0.585
CAP-EOM-EA-CCSD/aug-cc-pV5Z+3s3p3d(C) (Oth order)! 1.926 0.804
CAP-EOM-EA-CCSD/aug-cc-pV5Z+3s3p3d(C) (1st order)! 1.762 0.604
Experiment] 1.50 0.40

2See Ref. 90.
See Ref. 91.
“See Ref. 92.
dSee Ref. 93.
¢See Ref. 82.
fSee Ref. 70.
£See Ref. 26.
hSee Ref. 24.
IThis work.

See Ref. 94.

values for the resonance position and width are available from
the literature. Those values as well as the results we obtained
using our new CAP-EOM-EA-CCSD approach are compiled
in Table IX. The optimal CAP strengths corresponding to
our results are 0.0036 a.u. for the zeroth-order value and

0.0071 a.u. and 0.0058 a.u. for the real and imaginary part
of the first-order value.

Table IX shows that our results for the resonance position
are in qualitative agreement with those obtained from most
experiments as well as from other theoretical approaches.

TABLE IX. Resonance positions E, and widths I" for the 21 o Tesonance state of C,H, obtained using different

methods.

Method Eg (eV) I' (eV)
Theory

Multiple scattering Xo* 2.6 1.0
Feshbach projection/MR-CI/Dunning’s (9s5p)/[5s3p]+1p1d+3pP 2.96 1.11
Complex scaling/E3 decouplings of the e~ -propagator/5s9p1d, 3s3p(H) 2.50 0.21
Stabilization method/EOM-EA-CCSD/aug-cc-pVTZ+3p¢ 2.77 1.50
Stabilization method/TDDFT(HFE_PBE)/aug-cc-pVTZ+3p4 24 0.6
CAP-EOM-EA-CCSD/Dunning’s (9s5p)/[5s3p]+4p1d(C), 2s1p(H)® 1.79 0.80
CAP-EOM-EA-CCSD/aug-cc-pVTZ+-3s3p3d(C) (Oth order)" 2.655 0.979
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order) 2.450 0.831
Experiment

Trapped electron® 1.80/1.85 .
Vibrational excitation” 2.6 >1.0
Electron impact! 2.5

Dissociative attachment/electron transmission! 2.6 ..
Electron transmission® 2.6 ~0.8

2See Ref. 95.
See Ref. 96.
“See Ref. 82.
dSee Ref. 80.
¢See Ref. 26.
"This work.
£See Refs. 98 and 103.
hSee Ref. 100.
iSee Ref. 101.
iSee Ref. 102.
kSee Ref. 99.
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Only when using the trapped electron method”® %193 consid-

erably lower (~0.7 eV) resonance positions were found. Our
zeroth-order CAP-EOM-EA-CCSD result (2.655 eV) agrees
within 0.05 eV with the experimental values from Refs. 99,
100, and 102. We note that the first-order correction low-
ers the CAP-EOM-EA-CCSD result for £, by about 0.2 eV
bringing it closer to the experimental value from Ref. 101, but
basis-set effects may have an impact of similar magnitude.
Theoretical values for the resonance width vary be-
tween 0.19 eV and 1.11 eV and only two rough estimates of
0.8 eV* and >1.0 eV!? are available from experiment. Our
calculations qualitatively confirm these two estimates with
the zeroth-order result (0.979 eV) being closer to one value
and the first-order result (0.831 eV) being closer to the other
value. As mentioned for the resonance position, basis-set ef-
fects may have a sizable impact so that an ultimate decision
between the two experimental values cannot be made.

2 " -
D. “B,, resonance in C,H;

Similar to CO~, the 2B2g resonance in C,H, has been
chosen as a benchmark system in Sec. IV and here we will

J. Chem. Phys. 141, 024102 (2014)

compare it with previously reported values. The 2B2g reso-
nance in C,H, has been studied quite extensively by both
experimental'*1% and theoretical methods.%6:67-80.107-110
Experimental measurements by electron scattering and elec-
tron impact techniques'*'% located the position of the *B,,
resonance around 1.8 eV with a width of ' = 0.7 eV.
Theoretically, this resonance has been studied by a wide
variety of methods including complex scaling,'?”-!% CAP-
based approaches,% ¢ stabilization,?° as well as other techni-
ques.'%119 The reported theoretical values vary from 1.77 to
2.62 eV for the position of the resonance and from 0.11 to
1.32 eV for the width, i.e., by more than an order of the mag-
nitude in the latter case. All values along with the results from
our method are summarized in Table X.

Similar to the trends observed for the previously dis-
cussed systems, the largest values for both position and width
are found by DFT in combination with the stabilization
technique,®” whereas the narrowest widths are obtained when
using electron propagator methods.!'” The resonance posi-
tion obtained by CAP-EOM-EA-CCSD lies reasonably close
(within 0.3 eV) to the experimental value (1.8 eV) for all ba-
sis sets used. Similar to results from EOM-CCSD calculations

TABLE X. Resonance positions E, and widths I" for the 2B2 , Tesonance state of C,H, obtained using different

methods.

Method Eg (eV) I (eV)
Theory

Complex scaling/second order rotated propagator/5s7p 1.94 0.110
Complex scaling/second order rotated propagator/5s8p® 2.49 0.234
Complex scaling/second order rotated propagator/5s9p* 1.88 0.442
Complex Kohn method” 1.83 0.460
Complex scaling/bi-variational SCF/5s7p¢ 1.93 0.2
Complex scaling/ Second order biorthogonal e~ propagator/5s7p? 1.86 0.18
Complex scaling/ Diagonal 2ph-TDA biorthogonal e~ propagator/5s7p? 1.89 0.18
Stabilization method/EOM-CCSD/aug-cc-pVTZ+-3p¢ 2.06 0.64
Stabilization method/EOM-MP2/aug-cc-pVTZ+3p° 1.91 0.60
Stabilization method/ADC(2)/aug-cc-pVTZ+3p°¢ 1.78 0.49
Stabilization method/Koopmans theorem (HFE_BLYP)/aug-cc-pVTZ+3p*¢ 2.58 1.32
Stabilization method/Koopmans theorem (HFE_BPE)/aug-cc-pVTZ+3p® 2.62 1.08
Stabilization method/TDDFT (HFE_BPE)/aug-cc-pVTZ+3p° 2.49 0.31
CAP-CIP-VO (52)/559p 1.778 0.9076
CAP-FSMRCC-V "9 (42)/aug-cc-pVDZ2 1.802 0.3662
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (Oth order) 2.091 0.430
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)” 2.032 0.328
CAP-EOM-EA-CCSD/aug-cc-pVQZA-353p3d(C) (Oth order)” 1.988 0.447
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (1st order) 1.903 0.373
Experiment

Electron scattering’ 1.78 ...
Electron impact! 1.8 0.7
Elastic scattering® 1.8 0.7

2See Ref. 107.
bSee Ref. 108.
¢See Ref. 109.
dSee Ref. 110.
¢See Ref. 80.
fSee Ref. 66.
£See Ref. 67.
"This work.
iSee Ref. 104, vertical electron affinity used.
iSee Ref. 105.
kSee Ref. 106.
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TABLE XI. Resonance positions Ej and widths I" for the 2Bl resonance state of CH,O™ obtained using differ-

ent methods.

Method Eg (eV) I' eV)
Theory

Complex Kohn method?® 1.0 0.5
Static exchange® 3.0 ...
Complex scaling/zeroth-order e~ propagator/4s6p1d(C)/2s1p(H)® 1.0 0.1
Complex scaling/quasiparticle second-order e~ propagator/4s6p1d(C)/2s1p(H)" 0.99 0.1
Complex scaling/diagonal 2ph-TDA e~ propagator/4s6p1d(C)/2s1p(H)® 0.89 0.12
R-matrix method/augmented DZP¢ 1.32 0.546
R-matrix method/DZP¢ 1.46 0.794
Finite-element-discrete-model method® 0.682 0.429
CAP-SAC-Cl/cc-pVDZA+[255p2d/2s2p] ¢ 1.219 0.488
CAP-SAC-Cl/cc-pVTZA[2s5p2d/2s2p] ¢ 1.119 0.462
CAP-SAC-Cl/cc-pVQZA+[255p2d/2s2p] | 1.094 0.418
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (Oth order)® 1.352 0.376
CAP-EOM-EA-CCSD/aug-cc-pVTZ+353p3d(C) (1st order)? 1.314 0.277
Experiment

Electron transmission spectroscopy” 0.86

Vibrational excitation’ 0.87

4See Refs. 115, 116.

YSee Ref. 117.

“See Ref. 118.

dSee Ref. 119.

€See Ref. 120.

fSee Ref. 25.

2This work.

hSee Refs. 111, 112.
iSee Ref. 113.

using stabilization techniques,go the value of the resonance
position is overestimated by CAP-EOM-EA-CCSD, but
we observe a positive trend when enlarging the valence part of
the basis set from triple zeta to quadruple zeta. Our best esti-
mate for the position of the resonance (first-order CAP-EOM-
EA-CCSD/aug-cc-pVQZ+3s3p3d(C)) is 1.903 eV, which dif-
fers from the experimental value by only 0.1 eV and is thus
not worse than what is usually found in EOM-EA-CCSD cal-
culations for bound states.

The resonance width calculated with CAP-EOM-EA-
CCSD is underestimated in comparison to experiment by
roughly a factor of two. However, similar to the position,
the increase of the valence basis set size brings the theoret-
ical value of the width closer to the experimental one. But
in contrast to the position, the first-order correction worsens
the value for the width as compared to experiment so that
the best estimate from our calculations (0.373 eV, first-order
CAP-EOM-EA-CCSD/aug-cc-pVQZ~+3s3p3d(C)) still devi-
ates by more than 0.3 eV. We add that we observed a similar
underestimation of the resonance width in Sec. V A for N .

E. 2B, resonance in CH,0~

Formaldehyde is of particular interest for our study since
it is the smallest molecule containing the highly polar car-
bonyl group, which means that an accurate description of
polarization and correlation effects is especially important.
Zeroth-order and first-order estimates of the position and
the width of the *B, resonance state of CH,0O~ along with
previous experimental and theoretical data are compiled in

Table XI. The optimal CAP strength for the zeroth-order
CAP-EOM-EA-CCSD values is 0.01 a.u. and for the corre-
sponding first-order values 0.024 a.u. and 0.021 a.u. for the
real and imaginary part, respectively.

Experiments by electron transmission spectros-
copy!'!112 and vibrational excitation''® report values of 0.86-
0.87 eV for the resonance position. For the resonance width,
no experimental value is available from the literature, but
only an estimate based on electron collision experiments near
1 eV,''3 which shows the lifetime to be of the same order of
magnitude as the period of the v, vibrational mode (0.216 eV
for neutral formaldehyde““). This vibrational excitation (v,)
corresponds to the CO stretch mode, which is mainly excited
after autodetachment of the electron from the 2B, resonance
state.!'3 We deduce that the width of the resonance should be
of the order of 0.1 eV as it is the case for the w* resonances
of the molecules discussed before.

Previously reported theoretical values vary from
0.682eV to 3.0 eV for the position and from 0.1 to
0.794 eV for the width of the resonance.?>!'!>~120" Similar
to the molecules considered above, the static exchange
approximation overestimates the position of the resonance by
roughly a factor of three.!!> !¢ This can be explained by the
high polarity of the carbonyl group and the reorganization
effects when the molecule undergoes electron attachment,
which results in strong correlation between the incident elec-
tron and the electrons of the neutral formaldehyde and shows
the need for an accurate treatment of electron correlation.

We also note that the smallest width (0.1-0.12 eV)
is reported for electron propagator methods,''” a pattern
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similar to N;, CO~, and C,H;. Our method yields reso-
nance positions of 1.352 eV and 1.314 eV in zeroth order
and first order, respectively, which is significantly higher than
the experimental value, but close to the values obtained with
the R-matrix method.!'®!"® The widths obtained with CAP-
EOM-EA-CCSD are 0.376 and 0.277 eV in zeroth order and
first order, which agrees best with the results from SAC-CI
calculations.”> However, the lack of experimental data pre-
vents a more rigorous assessment of the values for the width
obtained with our method.

F. 211, resonance in CO;

The scattering of slow electrons by the CO, molecule
is well characterized experimentally.'?!~'>’ Besides higher-
lying resonance states, the existence of a 2T, metastable state
in the range of 3.8-4 eV was established. Theoretically, this
system has been studied most often with a special empha-
sis on the changes when going from the linear to a bent
structure, where the *I1, state splits into the A, and ’B,
components.'?813! The role of a virtual state near 2 eV'3? and
the interplay with other resonance states'®' have also been in-
vestigated. Somewhat surprisingly, the position and width of
the 2T1, resonance of the linear molecule have not yet been
studied using high-level quantum-chemical methods but only
within the static exchange approximation.'33-136

Table XII reports the results from the CAP-EOM-EA-
CCSD calculations for the *IT, resonance of linear CO, along
with theoretical and experimental values available from the
literature. Optimal CAP strengths corresponding to our val-
ues are 0.0074 a.u. in zeroth order and 0.0295 a.u. (real
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part) and 0.0810 a.u. (imaginary part) in first order. One
can see that CAP-EOM-EA-CCSD qualitatively reproduces
the experimental values for the resonance position and also
agrees within 0.2 eV with results from static exchange cal-
culations. This is especially noteworthy as we observed in
Secs. V A-V E that the static-exchange approximation tends
to overestimate the resonance position significantly. We also
note that the impact of the first-order correction on the reso-
nance position is relatively small (0.02 eV) as compared to the
systems discussed above. With respect to the resonance width,
Table XII shows that CAP-EOMEA-CCSD yields consider-
ably smaller values than calculations in the static-exchange
approximation, which can be related to the superior descrip-
tion of electron correlation in the former case. Also, the
impact of the first-order correction on the width is sizable
(0.08eV). We finally point out that our first-order result for
the resonance width (0.198 eV) agrees very well with the ex-
perimental value (0.20 eV) available from the literature.'??

G. 2A, and 2B resonances in C,H;

1,3-butadiene is different from all species discussed
above in that its 7 system extends over more than a single
double bond. Two low-lying 7* resonances of A, and *B
symmetry result from this electronic structure, both of which
have been characterized experimentally.!*!3” However,
while experimental values for the resonance position (0.62 eV
and 2.82 eV) are available, no values for the width of either
state have been reported in the literature. It was only con-
cluded that the lower lying A, state should be longer lived
as its spectrum exhibits vibrational structure. As for previous

TABLE XII. Resonance positions E and widths I" for the zl'lu resonance state of CO, obtained using different

methods.

Method Eg (eV) I' (eV)
Theory

Scattering/static exchange+polarization/DZP basis set* 3.8 0.5
Schwinger variational method/static exchange/[Sp4d/5p4d1 1P 5.39 0.64
Schwinger variational method/static exchange-polarization/[5s3p]+4s3p3d* 3.78 0.23
Close coupling/static exchange+polarization/DZP+add. diffuse functions? 3.88 0.34
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)® 4.020 0.119
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)® 3.997 0.198
Experiment

Electron scattering’ 3.8 e
Electron transmission spectroscopy® 3.14h 0.20 £ 0.07
Electron impact! 3.8

Impact of slow electrons! 3.6

Electron transmission spectroscopy® 3.58

High resolution attachment spectrometry’ 4.4

2See Ref. 133.

YSee Ref. 134.

“See Ref. 135.

dSee Ref. 136.

€This work.

fSee Ref. 121.

£See Refs. 122 and 126.
"The energy of the lowest observed vibrational level is given.
iSee Ref. 123.

iSee Ref. 124.

kSee Ref. 125.

ISee Ref. 127.
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TABLE XIII. Resonance positions Ep and widths I" for the 2Au and 2Bg resonance states of C,Hg (1,3-

butadiene anion) obtained using different methods.

Method ER (eV) I' (eV)
2Au state
Theory
DFT/B3-LYP/6-311+G(2df,p)* 0.76
CAP-EOM-EA-CCSD/aug-cc-pVDZ+353p3d(C) (Oth order)® 1.336 0.110
CAP-EOM-EA-CCSD/aug-cc-pVDZ+-3s3p3d(C) (1st order)® 1.327 0.059
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (Oth order)® 1.348 0.145
CAP-EOM-EA-CCSD/aug-cc-pVDZA+3s3p3d(A) (1st order)® 1.332 0.103
Experiment® 0.62
’B o State
Theory
CAP-EOM-EA-CCSD/aug-cc-pVDZA-353p3d(C) (Oth order)® 2.683 0.720
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (1st order)P 2.538 0.509
CAP-EOM-EA-CCSD/aug-cc-pVDZA+3s3p3d(A) (Oth order)® 2.647 0.919
CAP-EOM-EA-CCSD/aug-cc-pVDZA+3s3p3d(A) (1st order)® 2.544 0.630
Experiment® 2.82
2See Ref. 138.
YThis work.

¢See Ref. 104.

theoretical treatments of these resonances, only one study
on the 2A, state employing conventional DFT/B3LYP, which
found a surprisingly good agreement with experiment for
the resonance position (0.76 eV), is available from the
literature,'® but the resonance widths have apparently never
been studied theoretically.

In Table XIII, we report CAP-EOM-EA-CCSD results
for the resonance positions and widths of both 7* reso-
nances of 1,3-butadiene. For technical reasons, we employed
the aug-cc-pVDZ+3s3p3d(C) basis instead of the aug-cc-
pVTZ+-3s3p3d(C) basis, but in order to test again the validity
of the “C” as compared to the “A” scheme, results obtained
with the larger aug-cc-pVDZ+3s3p3d(A) basis are also in-
cluded in Table XIII. Optimal CAP strengths corresponding
to the results for the 2Au state in Table XIII are 0.0074 a.u,
0.0115 a.u., and 0.0210 a.u. for the zeroth-order and first-
order CAP-EOM-EA-CCSD calculations with the “C” basis
setand 0.0135 a.u., 0.0175 a.u., and 0.0310 a.u. for the respec-
tive calculations with the “A” basis set. For the 2B ¢ state, opti-
mal CAP strengths of 0.0098 a.u., 0.0270 a.u., and 0.0190 a.u.
were obtained with the “C” basis set and of 0.0165 a.u.,
0.0170 a.u., and 0.0350 a.u. with the “A” basis set.

Table XIII illustrates that aug-cc-pVDZ+3s3p3d(C) and
aug-cc-pVDZ+35s3p3d(A) yield similar results for the reso-
nance position. CAP-EOM-EA-CCSD overestimates the po-
sition of the A, resonance by about 0.7 eV regardless of the
basis set used and also independent of whether the first-order
correction is applied. For the *B ¢ State, an overall better agree-
ment with experiment is found (0.2-0.3 eV), but the first-order
correction makes a sizable impact and moves the CAP-EOM-
EA-CCSD values away from the experimental value. Note
that based on the findings from Sec. IV, one should expect
a significant change of all results when increasing the valence
basis set.

Concerning the resonance width, our results support the
experiment’s hypothesis that the A, state is considerably
longer lived than the ’B o state. We also note that first-order

results for the resonance width are smaller by 0.05 eV for
the %A, state and by 0.2-0.3 eV for the 2Bg state. The change
from the “C” to the “A” basis set makes an impact of simi-
lar magnitude but in opposite direction. A final judgment of
the accuracy of the results, however, cannot be made due to
the lack of other theoretical or experimental estimates for the
resonance width.

VI. CONCLUSIONS

A complete and robust implementation of CAPs within
EOM-EE-CCSD and EOM-EA-CCSD methods has been pre-
sented together with a protocol for studying molecular shape
resonances without system-dependent optimization of basis
set and CAP parameters.

In our approach, we choose the onset of the CAP as the
expectation value of the spatial extent of the reference-state
wave function, which ensures that the reference state is min-
imally perturbed by the CAP (~107> a.u.). We showed that
resonance positions and lifetimes obtained from energies that
are corrected for the CAP perturbation in first order'®2* are
less sensitive (~ 0.03 eV) to variation of the CAP onset than
uncorrected zeroth-order energies. To determine the optimal
CAP strength, we used the criterion from Ref. 24 for the sep-
arate stabilization of the real and imaginary part of the first-
order corrected energy instead of the most widely used crite-
rion |n dE/dn| = min based on the zeroth-order energy.

Benchmark studies for the 7* resonances of CO~ and
C,Hj illustrated that standard valence basis sets (for exam-
ple, aug-cc-pVTZ) augmented by a set of diffuse functions in
the center of the molecule are suitable for the study of res-
onance states with CAP-EOM-EA-CCSD. We showed that
the use of only a few diffuse functions of each angular mo-
mentum is sufficient for an accurate description of the diffuse
part of the resonance wave function. Further addition of dif-
fuse functions has little impact on resonance positions and
lifetimes. We also note that the inclusion of diffuse functions



024102-18  Zuev et al.

with angular momentum up to £ = 2 (d-functions) is essen-
tial for 7* resonances, thus suggesting that a set [3s3p3d] of
diffuse functions should be sufficient for most applications.
The convergence of resonance positions and especially life-
times with respect to the valence basis set is less clear, which
indicates that electron correlation is of higher importance for
resonances than for bound states. Although the theoretical un-
derstanding of the lifetime’s dependence on the valence basis
set remains an open problem, we emphasize that we did not
observe variations of more than 0.15 eV in the widths. Re-
garding the resonance position, we showed that the perfor-
mance of CAP-EOM-EA-CCSD is overall similar to that of
EOM-EA-CCSD for bound electron-attached states. In total,
our results for a variety of 7* shape resonances demonstrate
that CAP-EOM-EA-CCSD is competitive relative to other ap-
proaches for the theoretical treatment of resonances and often
able to reproduce experimental results for resonance positions
and lifetimes. The importance of electron correlation is again
illustrated by comparing with the results from mean-field ap-
proaches, which often disagree qualitatively with experiment.

While the current paper shows the potential of CAP-
EOM-CCSD approaches, it is also clear that the application
to larger systems is hampered by the need to calculate n-
trajectories, i.e., to recalculate the energy for different val-
ues of the CAP strength, which increases the computational
cost considerably as compared to conventional EOM-CCSD
calculations. To make our current implementation of CAP-
EOM-CCSD faster and to increase its black-box character, a
number of improvements will be pursued in future work. As
the wave function changes smoothly with the CAP strength,
one can expect that the use of the wave function parame-
ters from the previous step as a guess will accelerate the
calculation of n-trajectories significantly provided that suf-
ficiently small step sizes are used. A further automatization
will be possible by the implementation of analytic deriva-
tives dE/dn as this will enable the determination of optimal
CAP strengths without that the user has to specify a step
size and a range, where the search is performed. Put together,
these developments will enable the application of CAP-EOM-
CCSD to resonance states of larger molecules, for example,
biochromophores,lw’140 where standard EOM-CCSD is rou-
tinely used for the characterization of bound states.
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