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We present a formalism and an implementation for calculating spin-orbit couplings (SOCs)
within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions)
approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies
(EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization poten-
tials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative
approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli
Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value
approach rather than the response-theory formulation for property calculations. Both the full two-
electron treatment and the mean-field approximation (a partial account of the two-electron contribu-
tions) have been implemented and benchmarked using several small molecules containing elements
up to the fourth row of the periodic table. The benchmark results show the excellent performance of
the perturbative treatment and the mean-field approximation. When used with an appropriate basis
set, the errors with respect to experiment are below 5% for the considered examples. The findings
regarding basis-set requirements are in agreement with previous studies. The impact of different
correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD,
EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well
with each other (and with the experimental values when available). Using an EOM-CCSD approach
that provides a more balanced description of the target states yields more accurate results. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4927785]

I. INTRODUCTION

While it is not surprising that relativistic phenomena
play a crucial role in the properties of heavy elements, the
chemistry of molecules composed of light elements is also
affected by relativity.1,2 Among the various relativistic effects
(orbital contraction, increase in binding energies, etc.), spin-
orbit coupling (SOC) plays a special role. Although small
in absolute magnitude (typical values of SOCs in organic
molecules vary from several to hundreds of wave numbers),
SOC facilitates the mixing of otherwise non-interacting states
(e.g., singlet and triplet states); thus, it opens up new relaxation
pathways for electronically excited states (via inter-system
crossing, ISC) and enables new reaction channels.1–3 For
example, the reactions of O(3P) or O2(3Σ−g ) with unsaturated
hydrocarbons, which are common in combustion, proceed
through triplet diradical formation4–15 and the closed-shell
singlet products can only be formed through ISC. Other
examples of spin-forbidden processes in molecules composed
of light elements involve reactions of N(4S) and O(1D).16–20

Furthermore, SOCs are responsible for sensitization processes

producing singlet oxygen, which is important in photochem-
istry21–23 and is exploited in biomedical applications (e.g., in
photodynamic therapy). SOC also gives rise to triplet emission
(phosphorescence), which is essential in organic light-emitting
devices.24,25

SOC is particularly important for open-shell species. For
example, in doublet radicals with degenerate states (atoms in P,
D, . . . states; linear molecules in Π, ∆, . . . states), SOC leads
to a mixing of degenerate electronic configurations causing
noticeable changes in the wave functions, energetics, and
spectra. When chemical bonds are broken, SOC contributes
to the non-parallelity error (and, consequently, errors in bond-
dissociation energies), as it affects the most the energies of the
open-shell products. Thus, accounting for SOC is essential for
obtaining high-accuracy thermochemical data.26

SOC arises due to the coupling of the angular momentum
of an electron with the intrinsic magnetic moment associated
with its spin. For molecules composed of light atoms,
relativistic effects can be accurately treated perturbatively
by using the Breit-Pauli (BP) Hamiltonian.27,28 Here, we are
concerned with the spin-orbit part (spin-same-orbit and spin-
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other-orbit terms) of the BP Hamiltonian,

H so =
~e2

2m2
ec2




i

hso(i) · s(i) −

i, j

hsoo(i, j) · (s(i) + 2s( j))

,

(1)

hso(i) =

K

Zk(ri − RK) × pi

|ri − RK |3 =

K

ZK

r3
iK

(riK × pi), (2)

hsoo(i, j) = (ri − r j) × pi

|ri − r j |3 =
 1

r3
i j

(ri j × pi), (3)

where ri and pi are the coordinate and momentum operators
of the ith electron and RK and ZK denote the coordinates and
the charge of the K th nucleus.

The first term, hso(i), is a one-electron term; it originates
from the electron-nuclear attraction. Since this term is
proportional to the atomic charges, its magnitude increases
significantly for heavy elements. The second term, hsoo(i, j),
is a two-electron term. Its relative magnitude becomes less
important for heavier elements, as here the one-electron part
with its Zk dependence dominates.2,29 However, for organic
molecules, the two-electron contribution to the total SOC is
significant,2,29 but fortunately can be accurately accounted for
by a spin-orbit mean-field (called SOMF) approximation2,30

as described below.
Fully relativistic schemes describe SOC in a natural

manner. Here, we consider only SOC treatments within a
non-relativistic framework using the BP Hamiltonian. Full
SOC treatments and various flavors of the SOMF approxi-
mation have been implemented for different types of wave
functions1,29,31–39 including those obtained by complete active-
space self-consistent field (CASSCF),3,29,31–34 multi-reference
configuration interaction (MRCI),1,35 coupled-cluster (CC)
response,37 equation-of-motion CC (EOM-CC),37,38 multi-
reference CC (MRCC) via the Mk-MRCCSD formulation.39,40

Density functional theory (DFT) implementations have
also been reported.36,41,42 In most of the studies within
the CC/EOM-CC framework, a perturbative approach was
used,37–39 but a variational inclusion of SOC in the EOM-
CCSD treatments was also recently presented.43–45

All previous studies (see Refs. 2 and 3 and references
therein) consistently confirm the importance of the two-
electron part of the SOC for light molecules, as well as
the excellent performance of the SOMF and further, even
more drastic approximations. Benchmark studies compar-
ing mean-field and full SOC results for the EOM-CC
wave functions have demonstrated that errors introduced by
the mean-field approximation are much smaller than those
due to other approximations.37,38 The SOMF scheme has
also been successfully used within other electronic-structure
methods.2,35,36 However, despite the success of the SOMF
approximation, it is desirable to have a full two-electron
treatment of SOC available. The SOMF scheme, for example,
has not yet been thoroughly tested for organic diradicals,
where the two-electron SO part is responsible for strongly
geometry-dependent SOCs.46,47

This paper focuses on the calculation of SOCs within
the EOM-CC framework thereby using the usual CCSD

approximation. EOM-CC provides an efficient and robust
framework for computing multiple electronic states48–54 and
extends the single-reference CC methodology to multi-
configurational wave functions. For example, EOM-EE (exci-
tation energy) can describe multiple electronically excited
states including situations where the states are of a strongly
mixed character.55 EOM-IP (ionization potential) and EOM-
EA (electron attachment) enable the description of open-shell
doublet states and charge-transfer systems.56 EOM-SF (spin-
flip) allows one to tackle diradicals, triradicals, and bond-
breaking situations.57 Thus, EOM-CC provides an attractive
framework for the calculation of SOCs.

There are two ways to account for the spin-orbit effects:2

a variational approach (in which the spin-orbit part of the
BP Hamiltonian is included into the total Hamiltonian during
the wave function computation, e.g., when solving CI, CC,
or EOM-CC equations) and a perturbative approach. In the
latter, which we adopt in this work, one first computes the
non-relativistic wave functions and then evaluates the matrix
elements of H so between the states of interest (usually, for
a small block of interacting states). Diagonalization of this
Hamiltonian in the basis of the zero-order states yields the
perturbed wave functions and the splittings that can be directly
compared with experimental values. Thus, our target quantities
are the matrix elements of H so given by Eq. (1) between the
non-relativistic wave functions, Ψ(s,ms) and Ψ′(s′,m′s), of the
states involved,

⟨H so⟩ = ⟨H so
x ⟩ + ⟨H so

y ⟩ + ⟨H so
z ⟩, (4)

⟨H so
α ⟩ ≡ ⟨Ψ(s,ms)|H so

α |Ψ′(s′,m′s)⟩, α = x, y, z. (5)

Following the above equations, ⟨H so⟩ is a complex number
given by the sum of the matrix elements of the three
Cartesian components of the spin-orbit operator from Eqs. (2)
and (3).

Note that the couplings between different multiplet
components, as well as the individual Cartesian contribu-
tions, are not invariant with respect to molecular orientation
(assuming that the spin quantization axis is fixed along the z-
axis). However, the quantity called SOC constant3,33 (SOCC)
is invariant,

|SOCC(s, s′)|2 ≡
s

ms=−s

s′
m′s=−s′

�⟨Ψ(s,ms)|H so
x |Ψ′(s′,m′s)⟩

�2

+
���⟨Ψ(s,ms)|H so

y |Ψ′(s′,m′s)⟩���
2

+
�⟨Ψ(s,ms)|H so

z |Ψ′(s′,m′s)⟩
�2

. (6)

The SOCC is useful in the context of Fermi’s Golden Rule
calculations of rates for spin-forbidden processes. Experi-
mentally, SOCs are inferred from level splittings, intensity
patterns, or rates; the exact relationship between the SOC
matrix elements and spectroscopic observables depends on
the system and states involved. Selection rules for SOCs are
based on the Wigner–Eckart rules58,59 and are discussed in
detail in Ref. 3 (see also Appendix).

In this paper, we report an implementation for the
calculation of SOCs using EOM-EE/SF/IP/EA-CCSD wave
functions, including both a full two-electron SOC treatment
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and the SOMF approximation. Using several small molecules,
we benchmark the performance of these methods. The
accuracy of the SOCs computed with EOM-CCSD wave
functions is assessed by comparing the computed splittings
with experimentally derived values and previously reported
theoretical estimates. The accuracy of the SOMF approxi-
mation is evaluated by a comparison with results from full
two-electron calculations. By using various flavors of EOM
methods (e.g., EOM-EE versus EOM-SF, EOM-IP versus
EOM-EA), we assess the impact of different zero-order wave
functions on the computed values. Finally, by using open-shell
references (such as in the SF methods), we investigate the
impact of spin contamination on SOCs.

The structure of the paper is as follows. Section II presents
the theory. We begin with a brief presentation of EOM-CCSD
(Section II A) followed by a discussion of the formalism for
calculating properties within the EOM framework (Section
II B). We then introduce the BP Hamiltonian in its second-
quantization form and discuss the calculation of the respective
matrix elements (Section II C). Section II D presents the
mean-field treatment of the two-electron spin-orbital part of
the BP Hamiltonian. Details of the implementation are given
in Section II E and in the appendices, while benchmark results
are presented and discussed in Section III.

II. THEORY

A. Equation-of-motion coupled-cluster methods
with single and double excitations

The EOM-CC approach provides an efficient and robust
framework for computing multiple electronic states.48–54 As
described below, the different variants of the general EOM-CC
formalism target different types of electronic states, such as
electronically excited, electron-attached, or ionized states.51

Some extensions of EOM-CC (such as the spin-flip and
double ionization potential methods) facilitate the treatment of
multi-configurational wave functions that appear, for example,
in bond breaking and polyradicals.57,60–69 The EOM-CC
methods are closely related, or in some situations equivalent,
to the linear-response CC approaches.70–74

The EOM-CC wave function has the following form:

|Ψ⟩ = ReT |Φ0⟩, (7)

where the linear EOM operator R acts on the reference CCSD
wave function eT |Φ0⟩. The operator T is an excitation operator
satisfying the reference-state CC equations,

⟨Φµ |H̄ |Φ0⟩ = 0, (8)

whereΦµ are the µ-tuply excited determinants (with respect to
the reference determinant75 Φ0) and H̄ = e−THeT (the actual
values of µ are determined by the level of truncation of
T , e.g., µ = 1,2 for CCSD). The EOM amplitudes R and
the corresponding energies are found by diagonalizing the
similarity-transformed Hamiltonian, H̄ , in the space of target
configurations defined by the choice of the operator R and the
referenceΦ0 (see Ref. 51 for a detailed description of different
EOM models),

H̄ R = ER. (9)

In EOM-CCSD, the CC and EOM operators are truncated as
follows:

T ≈ T1 + T2, R ≈ R0 + R1 + R2, (10)

where only the single and double excitation operators (1-hole-
1-particle (1h1p) and 2-holes-2-particles (2h2p)) are retained
in T and R (in the case of EOM-EE and EOM-SF),

T1 =

ia

tai a†i T2 =
1
4


i jab

tabi j a†b† ji, (11)

R0 = r0 R1 =

ia

rai a†i R2 =
1
4


i jab

rabi j a†b† ji. (12)

In EOM-IP and EOM-EA, R is truncated at the 2h1p and 2p1h
levels, respectively.

Since H̄ is a non-Hermitian operator, its left and right
eigenstates, ⟨Φ0|L and R|Φ0⟩, are not identical but form a
biorthogonal set,

H̄ R|Φ0⟩ = ER|Φ0⟩, (13)

⟨Φ0|LH̄ = ⟨Φ0|LE, (14)

⟨Φ0|LMRN |Φ0⟩ = δMN , (15)

where M and N denote the Mth and N th EOM states and

L = L1 + L2 =

ia

l iai†a +
1
4


i jab

l i j
ab

i† j†ba. (16)

The expansion coefficients, l ia, l i j
ab

, rai , and rabi j , are found by
diagonalizing the corresponding matrix representation of H̄ .
For energy calculations, the knowledge of the right eigenstate
is sufficient. However, in property calculations, both the
left and right eigenstate need to be computed. The r and
l amplitudes are used to compute the one and two-particle
transition-density matrices (DMs) defined below.

In addition to choosing different types of target states,
one can also impose constraints on the spatial and spin
symmetry of the EOM-CC operators thereby exploiting the
block-diagonal structure of H̄ . Typically, only a minimal
set of target states is computed. For example, in EOM-
IP/EA using a closed-shell reference, one would usually
compute only the Ms =

1
2 target states, since the Ms = − 1

2
states are exactly degenerate with the Ms =

1
2 ones. In

EOM-EE, one usually considers spin-conserving (Ms = 0)
excitations and solves separately for different target ⟨S2⟩-
blocks (e.g., singlets and triplets in closed-shell systems).
We note that spin-flipping excitations from a closed-shell
reference produce the Ms = ±1 components of the triplet states
that are degenerate with the Ms = 0 ones in EOM-EE. This
is exploited in our implementation of SOC calculations —
instead of deriving the Ms = ±1 transition-density matrices
from those for Ms = 0 using the Wigner-Eckart rules, as done
in other implementations,35,76 we compute the Ms = 1 target
states directly and use these wave functions to compute the
respective density matrices. We also note that singlet-triplet
SOCs can be computed by using an EOM-SF scheme in which
the reference corresponds to a high-spin triplet state and the
target low-spin states are obtained by spin-flip (e.g., Ms = −1)
excitations.
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B. Calculation of properties using approximate wave
functions

There are two alternative strategies for computing
properties and transition probabilities for approximate wave
functions.36,77 In the so-called response-theory formulation,
one applies time-dependent perturbation theory (PT) to an
approximate state (e.g., the CCSD wave function); in this
approach, transition moments are defined as the residues of
the respective response functions (and excitation energies as
poles). Identical expressions for properties can be derived
for the static perturbations using an analytic-derivative
formalism.52,78–80 In the expectation-value approach, one
begins with expressions derived for exact states and then
uses approximate wave functions to evaluate the respective
matrix elements. The two approaches give the same answer
for the exact states; however, the expressions for approximate
states are in general different.77 For example, one can compute
transition-dipole moments for EOM-EE using the expectation-
value approach; in this case, a so-called unrelaxed one-
particle transition-density matrix will be used.81 Alternatively,
a full response derivation gives rise to expressions that
include amplitude (and, optionally, orbital) relaxation terms;
this is how the properties are computed within the linear-
response formulation of CC theory. Numerically, the two
approaches are rather similar,77,78,82 although the expectation-
value formulation of properties within EOM-CC is not size-
intensive83 (the deviations, however, are relatively small84).
The response formulation can become singular in the cases of
degenerate states,37 whereas the expectation-value approach
does not have such a problem. The differences between the
two formulations for transition properties will be discussed
in detail elsewhere. Here, we focus solely on the expectation-
value approach. Thus, we compute the SOCs by using Eq. (5)
and EOM-CC wave functions.

As was noted before,81 the non-Hermitian nature of EOM-
CC theory requires additional steps when computing interstate
properties. The matrix element of an operator A between states
ΨM and ΨN is defined as follows:

|AMN | =
⟨ΨM |A|ΨN⟩⟨ΨN |A|ΨM⟩. (17)

AMN is independent of the choice of the norms of the left
and right EOM states (the left and right EOM states are
biorthogonal; however, the norms of the left or right vectors are
not uniquely defined). Thus, Eq. (5) is modified accordingly.
The phase of AMN is discussed in Ref. 37 — whereas it is
not uniquely defined, one can define the relative phases of
different AMN in a way that ensures that they are consistent
at different geometries. Here, we follow the recommendation
from Ref. 37 and use the sign of ⟨ΨM |A|ΨN⟩ to define the
phase.

When computing matrix elements between different EOM
states, e.g., between the EOM-IP/EA target states, ΨM,N

correspond to the left and right EOM states for states M and N .
When using EOM-EE/SF, two different situations are possible.
One may compute the SOCs between the two EOM-EE states
(e.g., S1 and T1); this is similar to the situation described
above. However, one may also consider the calculation of
SOCs between the reference CCSD and the target EOM-CC

states (e.g., S0 and T1 in EOM-EE or T1 and S0 in EOM-
SF). This requires calculating the so-called Λ-amplitudes that
can be described as the left eigenstate of H̄ corresponding
to the CCSD reference state. Thus, in Eq. (17), one should
use the left and right target EOM-CC state for one of the
states, whereas the second state (corresponding to the CCSD
reference) assumes the following form:

|Ψ0⟩ = |Φ0⟩ ⟨Ψ0| = ⟨Φ0|(1 + Λ1 + Λ2) (18)

where Λ1,2 has the same form as L1,2 operators for the left
EOM states, Eq. (16).

C. Breit-Pauli Hamiltonian in second-quantization
form

The spin-orbit part of BP Hamiltonian (1) assumes
the following form in its second-quantization representation
(using atomic units):

H so =
1

2c2




p,q

Ipq p†q +
1
2


p,q,r,s

Jpqr s p†q†sr

, (19)

Ipq = ⟨φp(1)|hso(1)s(1)|φq(1)⟩, (20)
Jpqr s = −⟨φp(1)φq(2)|hsoo(1,2)(s(1) + 2s(2))|φr(1)φs(2)⟩,

(21)

where φp(1) ≡ φp(r1,σ1) denotes the pth spin orbital.
The matrices Ipq and Jpqr s are anti-symmetric,

Ipq = −Iqp
Jpqr s = −Jr spq.

(22)

In addition, the two-electron spin-orbit integrals have the
following symmetry:

Jpqr s = −Jrqps = Jpsrq. (23)

Spin-symmetry and programmable expressions for the one-
and two-electron integrals Iσpσq

pq and Jσpσqσrσs
pqr s are given in

Appendix A.
To compute SOCs, one needs to contract these integrals

with the respective transition-density matrices,

⟨Ψ(s,ms)|H so |Ψ′(s′,m′s)⟩ =

pq

Ipqγpq +
1
2


pqr s

Jpqr sΓpqr s,

(24)

where

γpq = ⟨Ψ(s,ms)|p+q|Ψ′(s′,m′s)⟩, (25)

Γpqr s = ⟨Ψ(s,ms)|p+q+sr |Ψ′(s′,m′s)⟩. (26)

When using the SOMF approximation, only the one-particle
DM is needed,

⟨Ψ(s,ms)|H so |Ψ′(s′,m′s)⟩ ≈

pq

HSOMF
pq γpq, (27)

where HSOMF
pq is the effective one-electron spin-orbit operator

described below.
Because the matrices Ipq and Jpqr s are anti-symmetric,

the unsymmetrized (or anti-symmetrized) transition-density
matrices need to be used to evaluate Eqs. (24) and (27),
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which is different from the calculation of most other inter-
state properties. The symmetric part of the DMs does not
contribute to the computed SOC matrix elements. The expres-
sions for the required DMs are given in the supplementary
material.85

D. Mean-field treatment of the two-electron spin-orbit
part

The mean-field approximation2,30 leads to the following
effective spin-orbit Hamiltonian:37,38

HSOMF =

pq

HSOMF
pq p†q (28)

HSOMF
pq = ⟨φp(1)|hso(1)s(1)|φq(1)⟩ + 1

2


r

nr[⟨φp(1)φr(2)|hsoo(1,2)(s(1) + 2s(2))|φq(1)φr(2)⟩
− ⟨φp(1)φr(2)|hsoo(1,2)(s(1) + 2s(2))|φr(1)φq(2)⟩ − ⟨φr(1)φp(2)|hsoo(1,2)(s(1) + 2s(2))|φq(1)φr(2)⟩]
= Ipq +

1
2


r

nr[Jprqr − Jprrq − Jr pqr], (29)

where nr is the average occupation of the rth spin orbital.
Eq. (29) can be written in a more general form30,35 using

an arbitrary (not necessarily diagonal) density matrix ρr s,

HSOMF
pq = Ipq +

1
2


r s

ρr s[Jprqs − Jpr sq − Jr pqs]. (30)

We use the symbol ρ here to distinguish this state-density
matrix from the transition-density matrix γ defined above. We
also note that ρ is a symmetric matrix.

The form of the SOMF operator has been introduced30 by
analyzing matrix elements between determinants that differ
by one spin orbital. It was noted that the contributions from
doubly occupied orbitals can be added up and that only the
singly occupied orbitals need to be considered explicitly.
Below, we present an alternative derivation.

The mean-field approximation can be derived by analyz-
ing the contributions to the total matrix element of a two-
electron operator from the separable and non-separable parts
of the two-particle DM (2DM). Note that the treatment
presented below applies for both state properties (expectation
values) and inter-state matrix elements. In the latter case,
transition 2DMs are employed.

The separable part of 2DM, Γ̃, in CC/EOM-CC has the
following form:86

Γ̃pqr s = P+(pr,qs)P−(p,q)ρr pγqs
= ρr pγqs − ρrqγps + ρsqγpr − ρspγqr , (31)

ρr p =



δr p r,p ∈ occupied in Φ0

0 otherwise
. (32)

When contracted with a two-electron operator, A = 1
2


pqr s

Apqr sp†q†sr , it yields the following contribution to the overall
matrix element:87

α2e =
1
2


pq

γpq




r s

ρr s
�
Aprqs + Ar psq − Apr sq − Ar pqs

�
.

(33)

Further simplifications are possible depending on the permu-
tational symmetry of the matrix A. For the SOC operator, see
Eqs. (22)–(23), we thus obtain

α2e =
1
2


pq

γpq




r s

ρr s
�
Jprqs − Jpr sq − Jr pqs

�
. (34)

This is exactly the mean-field expression given by Eq. (30).
The spin-integrated expression for α2e is given in Appendix B.

As evident from Eq. (34), this is a combined contribution
from all the configurations in Ψ and Ψ′ differing by one-
electron excitation only. The value of this matrix element is
bound by the norm of γ, ∥γ∥, by virtue of the Cauchy-Schwartz
inequality.88,89 For interacting states that can be described as
pure one-electron excitations relative to each other, ∥γ∥ is
one; for states that are doubly excited with respect to each
other, ∥γ∥ is zero. The contributions from the non-separable
part of the 2DM are due to configurations that differ by two-
electron excitations. Thus, the mean-field approximation of a
matrix element of a two-electron operator entails considering
only the contributions from the configurations that differ
by a one-electron excitation. We note that in the Hartree
Fock–configuration interaction singles (or Kohn-Sham–time-
dependent DFT) treatment of the transition, the non-separable
part of 2DM is exactly zero; thus, the mean-field expression
gives in these cases the exact two-electron contribution.36 In
the case of state properties, the contributions from the non-
separable 2DM only arise due to correlation, that is, for HF
wave functions, the 2DM contains only the separable part.

This analysis explains the success of the mean-field
approximation. Indeed, in typical SOC calculations, such as
for the SOCs between S0 and T1 or S1 and T1 states in organic
molecules or couplings between the two components of a
doublet state (see Section III A), the interacting states can
be described as singly excited with respect to each other
(in other words, the transition between the two states has a
significant one-electron character). This analysis also indicates
when to expect a break-down of the mean-field approximation
— when the two interacting states are doubly excited with
respect to each other. In such a case, there are no contributions
from the one-electron part and no contributions from the
separable part, only the genuine (i.e., non-separable) two-
electron contributions survive. Of course, in these situations,
the anticipated magnitude of the SOC is small. To detect such
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situations, one can monitor ∥γ∥ — if its value becomes too low,
one should consider computing the full two-electron SOC.

The mean-field expression given above is independent of
whether one considers two or more states since the separable
part of the 2DM has always the same form and the differences
between the states are contained in γ. Therefore, there is
no justification and no need for using state-averaged density
matrices in Eq. (29).

The SOMF Hamiltonian can be used as a starting point
for more drastic approximations. For example, by retaining
only the diagonal blocks of ρ (in the AO basis), one arrives
at the atomic mean-field (AMFI) approximation. A further
cost reduction can be achieved by introducing one-center
approximations for the one and two-electron integrals (AMFI
approximation).90

E. Implementation

The expectation value of the SOC is computed in
Q-Chem91 by contracting the one- and two-electron SOC
integrals with the appropriate transition-density matrices
according to Eqs. (24) and (27). We compute the required
target states by using general EOM-CCSD codes that allow to
calculate the different Ms components of the triplet states by
using spin-flipping operators. We use the following procedure
for computing the full SOC:

1. Form the x, y , and z components of one- and two-electron
SOC integrals in the AO basis by combining (geometric)
second-derivative Coulomb integrals as prescribed in
Ref. 32, see also Appendix.

2. For each EOM transition, compute the one- and two-
particle transition DMs in the molecular spin-orbital basis.

3. Transform the appropriate spin blocks (see Appendix) of
the DM into the AO basis; combine the transformed blocks
to form the Cartesian components of the DM.

4. Contract the x, y , and z SOC integrals with the respective
density matrices to yield the real and imaginary compo-
nents of the SOC: ⟨HSO⟩ = ⟨HSO

y ⟩ + ⟨HSO
x ⟩ + ⟨HSO

z ⟩.
5. Repeat the procedure for the transposed counterpart of the

EOM density matrix.
6. Evaluate the EOM average according to Eq. (17).

In order to obtain the SOC using the mean-field approx-
imation, the two-electron SOC integrals are first contracted
with the density matrix ρrs to form the matrix of the one-
electron SOMF operator, see Eq. (34) and there the expression
within the square brackets. In this case, the computation of the
two-particle transition-density matrices is not required.

This implementation has been validated by comparing
the computed SOCs against those obtained with the CFOUR92

implementation. In CFOUR,92 the SOC integrals are computed
as described in Refs. 93 and 94 using the McMurchie-
Davidson scheme.95 The EOM-CC transition-density matrices
have been computed using slightly modified versions of
the available EOM-CC analytic-derivatives codes.96–98 The
obtained transition-density matrices are then transformed to
the AO basis and contracted with the spin-orbit integrals. The
SOMF scheme has been implemented based on the work in
Refs. 40 and 94, noting that in Ref. 40, the mean-field scheme
involves an additional averaging over spin.

III. RESULTS AND DISCUSSION

We begin the discussion by summarizing the results
of previous calibration studies of SOCs calculations using
CC/EOM-CC wave functions.37–40 In Refs. 37–40, detailed
benchmark calculations have been performed for diatomic
and triatomic doublet radicals (OH, SH, SeH, ClO, BrO, NCS,
N2O+, CCO−, CCF, and CCCl) using EOM-IP-CCSD and Mk-
MRCCSD wave functions.38–40 Ref. 38 also considered O+2 ,
CF, NO, PO, NS, and PS. In addition, the relative magnitude
of the one- and two-electron contributions, the errors of the
SOMF approximation versus a full two-electron treatment, the
performance of the AMFI approximation, basis-set conver-
gence, as well as different correlation treatments (EOM-
IP-CCSD versus Mk-MRCCSD) have been investigated. In
Ref. 37, the SOCs between S0/T1 and S1/T1 were analyzed
using the response-theory formulation for the calculation of
properties. The following molecules have been studied: BH,
AlH, and HSiX (X = F, Cl, Br).

The most significant findings of these studies can be
summarized as follows:37–39

1. In agreement with earlier studies (see Ref. 2 and references
therein), the relative contribution of the two-electron part
is large for light molecules (more than 50% of the one-
electron part). The one- and two-electron contributions
have opposite signs, so pure one-electron calculations
significantly overestimate (by 50% and more) the coupling.
In heavier molecules, the difference is less pronounced,
but still noticeable (e.g., 25% and 10% in ClO and BrO,
respectively).

2. The differences between the full two-electron treatment and
the SOMF approximation are consistently small (usually
less than 1 cm−1) for both light and heavy molecules and
are insensitive to the basis set.

3. Further approximations such as used in the AMFI approach
introduce only minor errors.

4. The basis-set dependence of the SOCs in these species has
been extensively investigated in Ref. 39 where basis sets
up to cc-pCV5Z were used (with g, h, and i functions
removed). In the case of Mk-MRCCSD wave functions
with the SOMF approximation, the strongest basis-set
dependence was observed for molecules with heavy atoms.
For ClO, an increase of the basis set from cc-pCVDZ to
cc-pCVTZ results in changes of about 10 cm−1 in the spin-
orbit splitting, a further increase to quadruple and pentuple
zeta leads to changes of 6 and 1 cm−1, respectively. For
light molecules, the differences are smaller, e.g., for OH,
the difference between triple and quadruple zeta is less
than 2 cm−1. In Ref. 37, differences of less than 1% were
observed for the SOCs computed with the aug-cc-pCVTZ
and aug-cc-pVTZ basis sets in the case of BH.

5. In some cases, it was observed37 that freezing the core
electrons does not introduce large errors, i.e., differences
less than 1 cm−1 between all-electron and valence-only
calculations were reported in Ref. 37.

6. The differences between the EOM-IP-CCSD and Mk-
MRCCSD values were found to be small (1%-3%).

7. For the set studied in Ref. 39, the errors of the computed
SOCs were around 2%-10%. It was speculated that the
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TABLE I. Spin-orbit splittings (cm−1) in selected doublet radicals computed by EOM-IP-CCSD.a

OH SH SeH

Basis 1el SOMF 1el+2el 1el SOMF 1el+2el 1el SOMF 1el+2el

cc-pVTZ/FC 210.12 135.62 134.23 419.80 338.05 337.78 1700.80 1535.28 1535.05
cc-pVTZ 210.21 135.68 134.27 445.17 359.40 358.98 1762.38 1591.61 1591.31
cc-pCVTZ/FC 211.21 136.51 135.10 418.48 336.97 336.72 1722.06 1554.03 1553.58
cc-pCVTZ 211.52 136.72 135.55 460.20 372.37 371.55 1859.42 1680.39 1679.37

cc-pVQZ/FC 210.30 136.26 134.96 413.56 333.02 332.78 1680.77 1516.97 1516.73
cc-pVQZ 210.50 136.40 135.13 439.09 354.34 353.92 1747.04 1577.55 1577.19
cc-pCVQZ/FC 211.20 137.04 135.74 415.11 334.40 334.17 1710.47 1543.60 1543.15
cc-pCVQZ 211.59 137.32 136.35 457.37 370.23 369.53 1857.34 1679.05 1677.94

aFunctions with g and higher angular momentum omitted.

remaining discrepancy is due to the limitations of using
non-relativistic zero-order wave functions and, possibly,
higher-order correlation effects.

Below we consider several representative examples from
previous studies, with an emphasis on using different zero-
order wave functions. The following tight convergence thresh-
olds were used in the Q-Chem calculations: SCF (10−12),
CCSD energy (10−10), CCSD amplitudes (10−9), EOM ampli-
tudes (10−8). In the Q-Chem calculations, g and higher
angular-momentum functions were removed. In the CFOUR
calculations, both the modified and unmodified basis sets were
employed. Pure angular-momentum functions were used in all
calculations.

A. EOM-CCSD calculations of SOCs in doublet
radicals

Our first benchmark set comprises several 2Π radicals for
which experimental and theoretical values are available. As
explained in Refs. 38–40, SOC leads to the mixing of the two
degenerate components of the 2Π state (Ψx and Ψy) resulting
in the Π1/2 and Π3/2 states; the splitting between the two states
equals 2·|⟨Ψx |H so |Ψy⟩|, where only the z-component of ⟨H so⟩
is non-zero.

We considered the following radicals: OH, SH, SeH, ClO,
BrO, NCS, and N2O+. We used the same geometries as in
Ref. 39 (the geometries and relevant energies are given in the
supplementary material85).

The leading electronic configurations of Ψx and Ψy in
OH, SH, and SeH are

Ψx = [core](σ)2(πx)1(πy)2, (35)

Ψy = [core](σ)2(πx)2(πy)1. (36)

These two states can be conveniently described by EOM-
IP-CCSD using an anionic closed-shell reference state,
[core](σ)2(πx)2(πy)2. Alternatively, one can employ EOM-
EE-CCSD in which one of the states is described by CCSD
and the other by EOM-EE-CCSD. Yet, another possibility
is to use EOM-EA-CCSD with a high-spin triplet reference,
[core](σ)2(πx)1(πy)1 (if the αα reference state is used, the
spin of the attached electron should be β). The EOM-IP-
CCSD treatment is the most balanced, as both states are
treated on the same footing and are spin-pure; also, the πx

and πy orbitals are exactly degenerate when using a closed-
shell anionic reference. The relevant electronic states of ClO
and BrO as well of NCS and N2O are also best described
by EOM-IP-CCSD using the appropriate closed-shell refer-
ences.

Table I shows the results for OH, SH, and SeH computed
with the polarized core-valence and the more compact cc-
pVXZ basis sets with and without frozen core. We focus
on the triple- and quadruple-zeta basis sets only (with g and
higher angular-momentum functions removed), since the cc-
pCVQZ results are essentially converged.39 We observe that
while freezing the core electrons has a negligible effect on
the SOCs in OH; the errors for heavier elements are rather
large (40-130 cm−1 in SeH, i.e., 3%-8%). Most of the error
comes from the one-electron part of the SOC. Such a strong
dependence on the core electrons is somewhat surprising,
given that the relevant electronic states are more or less of
valence Koopmans-like character. We note that this result
is different from the findings reported in Ref. 37 where
much smaller differences between all-electron and valence-
only calculations have been observed for different systems
and using a response-theory frozen-core treatment.

In the subsequent calculations, we employ the cc-pCVTZ
basis for second and third row atoms and the cc-pCVQZ basis
for heavier elements (with g and higher angular-momentum
functions removed). For hydrogen, the cc-pVTZ basis is used.
All electrons are correlated. We note that, based on the results
from Table I, for molecules composed of second-row atoms,
the cc-pVTZ basis can be employed in SOCs calculations with
a frozen-core treatment.

Table II summarizes the splittings for the same set
of radicals computed by different methods. The differences
between the different EOM methods are small but noticeable;
they range between 1% and 13% (the largest differences were
observed for BrO and ClO, in other cases, the differences are
1% and 3%). We note that in all cases except SeH and N2O,
the EOM-IP-CCSD values are closer to the experimental ones,
which is expected based on the more balanced description of
the target states is provided by EOM-IP-CCSD. The states
computed using an open-shell reference (as in the EOM-EA-
CCSD and EOM-EE-CCSD calculations) might be affected
by spin contamination.

The norms of the one-particle DMs reveal that the
transitions between the states involved are indeed mostly of
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TABLE II. Spin-orbit splittings (cm−1) in selected doublet radicals computed by various EOM-CC methods.

IP-CCSDa EA-CCSDa,b EE-CCSDa,b Mk-MRCCSDc

System Expt. 1el+2el SOMF ∥γ∥ 1el+2el SOMF ∥γ∥ 1el+2el SOMF ∥γ∥ 1el+2el SOMF

OH 139.2 135.55 136.72 0.98 135.57 132.77 0.97 136.08 134.73 0.96 135.1 136.1
SH 377.0 371.55 372.37 0.97 369.09 368.56 0.94 373.49 373.67 0.92 374.7 374.9
SeH 1764.4 1679.38 1680.40 0.97 1669.44 1669.03 0.94 1691.13 1691.56 0.93
SeH/CQZd 1677.94 1679.05 0.97 1682.51 1681.97 0.94 1708.12 1708.55 0.93 1707.6 1708.2

ClO 320.3 306.85 308.25 0.94 291.00 288.70 0.99 299.65 298.80 0.91 305.3 306.6
BrO 975.4 904.28 905.84 0.94 803.11 800.59 1.02 833.46 832.52 0.91 918.5
BrO/CQZd 946.02 947.52 0.94 820.74 818.03 1.02 866.17 865.08 0.91

NCS 325.3 329.90 330.68 0.94 336.28 335.54 0.93 338.79 338.83 0.89 360.4
N2O+ 132.4 126.91 127.73 0.94 130.70 128.47 0.93 129.25 128.22 0.89 130.9

acc-pCVTZ, all electrons are correlated.
bROHF reference.
cResults from Ref. 39.
dcc-pCVQZ basis set with g and higher angular-momentum functions omitted, all electrons are correlated.

one-electron character (∥γ∥ ≥ 0.89). Interestingly, for these
diatomic radicals, the EOM-IP-CCSD DMs show the largest
one-electron character and the EOM-EA-CCSD ones the
smallest.

Our second set consists of the isoelectronic doublet
radicals from Ref. 38 — O+2 , CF, NO, and several heavier
ones (PO, NS, PS). The geometries are the same as in Ref. 38;
they are given in the supplementary material.85

The two 2Π states in these species have the following
electronic configuration:

Ψx = [core](σ(s))2(σ∗(s))2(σ(p))2(πx)2(πy)2(π∗x)1(π∗y)0, (37)

Ψy = [core](σ(s))2(σ∗(s))2(σ(p))2(πx)2(πy)2(π∗x)0(π∗y)1. (38)

There are three possible ways to compute these states by
EOM: (i) by EOM-EA using the closed-shell reference,
[core](σ(s))2(σ∗(s))2(σ(p))2(πx)2(πy)2, (ii) by EOM-IP us-
ing the high-spin reference, [core](σ(s))2(σ∗(s))2(σ(p))2(πx)2
(πy)2(π∗x)1(π∗y)1, as was done in Ref. 39, and (iii) by EOM-EE
using either Ψx or Ψy as the reference.

Table III summarizes the results of these calculations.
For CF, O+2 , and NO, the difference between EOM-IP, EOM-
EE, and EOM-EA does not exceed 6 cm−1 (about 3%). A
similar trend is observed for the heavier species. The splittings
computed with these methods agree with the experimental

values within ∼3%. In almost all cases (except CF, PO and
PS), the EOM-EA SOCs are closer to the experimental values
than the SOCs computed by the other EOM models. This is
expected, since EOM-EA provides the most balanced (and a
spin-pure) description of the target states in these systems. We
note that ∥γ∥ are again close to one (≥0.87). For these systems,
∥γ∥ for EOM-EA are the largest; this is expected based on the
balanced nature of EOM-EA wave functions for these states.
The EOM-EE-CCSD and EOM-IP-CCSD values in Table III
are computed with a ROHF reference. To assess the impact of
spin contamination due to the use of an open-shell reference,
we repeated these calculations with a UHF (unrestricted HF)
reference; the results are given in the supplementary material85

(Table S6). One can see that the impact of choosing a UHF
instead of a ROHF (restricted open-shell HF) reference is
rather small in these systems (in most cases, the difference is
less than 1 cm−1); this is consistent with the relatively minor
spin contamination of the reference (the deviation of ⟨S2⟩ from
the exact values is 0.01-0.06). The largest observed difference
between the results from ROHF and UHF based calculations
is 7 cm−1 (EOM-EE calculations for PS); it also corresponds
to the case with the largest spin contamination. We note that
in this case, the ROHF value is closer to experiment; however,
for NS in which the ROHF-UHF difference is 5 cm−1, the
situation is opposite.

TABLE III. Spin-orbit splittings (cm−1) in selected doublet radicals computed by various EOM-CCSD methods
using the cc-pCVTZ basis.

EOM-EA EOM-IPa EOM-EEa

System Expt.b 1el+2el SOMF ∥γ∥ 1el+2el SOMF ∥γ∥ 1el+2el SOMF ∥γ∥
CF 77.1 76.37 74.93 0.97 78.15 79.11 0.94 77.00 76.48 0.92
O+2 200.3 204.31 201.37 0.97 193.84 195.27 0.90 195.13 193.70 0.88
NO 123.1 124.29 122.13 0.97 121.55 122.72 0.92 121.85 120.90 0.90
PO 224.0 233.04 232.21 0.95 215.67 216.53 0.92 223.87 223.76 0.89
NS 222.9 228.03 226.84 0.95 242.03 242.85 0.90 231.46 231.09 0.87
PS 321.9 330.50 330.01 0.94 327.55 328.35 0.91 327.92 328.11 0.87

aROHF reference.
bExperimental values are taken from Ref. 38.
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B. EOM-EE-CCSD and EOM-SF-CCSD calculations
of SOCs between singlet and triplet states

Our next set comprises the closed-shell molecules studied
in Ref. 37: BH, AlH, HSiF, HSiCl, and HSiBr. In these
systems, we compute the SOCs between the S0 and T1 as
well as the S1 and T1 states: 11Σ+ and 13Π for BH/AlH, and
11A′/11A′′ and 13A′′ for the triatomics. As described below,
these target states can be accessed either by EOM-EE starting
from a closed-shell reference, as was done in Ref. 37, or by
EOM-SF-CCSD from a high-spin triplet reference. Thus, we
can compare the impact of using different zero-order wave
functions in these systems.

As explained in Appendix C, for the BH molecule in its
standard orientation (along the z-axis), the coupling between
the Ms = 0 component of the 13Πx and 11Σ+ is zero and for the
Ms = ±1 components, only ⟨HSO

x ⟩ is non-zero. By aligning the
molecule along the x-axis, the coupling for the Ms = ±1 states
becomes zero, but we compute a non-zero matrix element
⟨11Σ+|H so |3Πx(ms = 0)⟩ which is equal to ⟨HSO

z ⟩. The two
matrix elements are not equal but connected by a factor of

√
2

that arises due to the wave-function normalization giving rise
to the following relationship between the respective transition
densities:

∥γαα(ms = 0)∥ = ∥γββ(ms = 0)∥ = 1
√

2
∥γαβ(ms = −1)∥

=
1
√

2
∥γβα(ms = 1)∥. (39)

One can clearly see that the SOCC that entails summing over
all multiplet components is invariant to the rotation,

SOCC(along z) = √2 × ⟨HSO
x ⟩ = hx, (40)

SOCC(along x) = ⟨HSO
z ⟩ = hz. (41)

These relationships provide an additional tool for validating
the implementation.

The calculations were performed using the geometries
from Ref. 37. We compare the use of EOM-EE versus EOM-
SF wave functions. Table IV contains the results for AlH and
BH computed with the cc-pCVTZ and aug-cc-pVTZ basis sets.
We report the SOCC — see Eq. (40) and the discussion above.
Reference 37 reported small differences between the results
obtained with the aug-cc-pVTZ and aug-cc-pCVTZ basis sets.
For BH, the difference was 3.48 versus 3.51 cm−1 (with core
electrons kept frozen), whereas the all-electron calculations
with aug-cc-pCVTZ gave 3.56 cm−1. The difference between
the LR-CCSD (linear response CCSD, i.e., response-theory
formulation) and EOM-CCSD results is small (less than 2%).
The effect of using a frozen core is small for BH, but for AlH,
it is about 15%. The norms of ∥γ∥ for the EOM-EE and EOM-
SF transitions are similar in magnitude (0.9), which suggests
that the description of the target states is of a similar quality
by both methods. The differences between the EOM-EE and
EOM-SF values are small (within 0.5%-2%).

We now proceed to the calculations for HSiX (X = F,Cl,
Br), i.e., the silicon analogues of the halocarbenes. Table V
lists the individual components of the SOC. The EOM-EE and
EOM-SF values are within 4% from each other for the S0-T1
SOCs (EOM-reference); however, the differences for the T1-

TABLE IV. Spin-orbit coupling constant (cm−1) in BH and AlH computed
with the SOMF approximation.

EOM-EE-
CCSD

EOM-SF-
CCSD

System LR-CCSDa SOCC ∥γ∥ SOCC ∥γ∥
BH/cc-pCVTZ 4.16 0.93 4.10 0.93
BH/aug-cc-pVTZ/FCb 3.48 4.01 0.93 3.96 0.93
BH/aug-cc-pVTZ 4.03 0.93 3.99 0.93
AlH/cc-pCVTZ 33.70 0.93 32.94 0.93
AlH/aug-cc-pVTZ/FCb 27.06 26.97 0.92 26.49 0.92
AlH/aug-cc-pVTZ 31.95 0.92 31.45 0.93

aResponse-theory CCSD From. Ref. 37 using AMFI (SOMF + 1-center approximation
for all spin-orbit integrals).
bIn the frozen-core calculations, only 4 electrons are correlated.

S1 couplings are much larger, up to 40%. The discrepancy
is attributed to the poor performance of the current, non-
spin-adapted version of EOM-SF for this particular type of
interacting states, as explained in the following.

We note that spin contamination in the triplet reference
is quite small for these molecules and the quality of the
SF description of the target T1, S1, and S0 states is good.
The large difference between the EOM-EE and EOM-SF
results for the S1/T1 SOCs originates from the nature
of the SO operator that requires a change in the orbital
orientation47,99,100 (for example, the diagonal elements of
the matrix representation of the one-electron part of the SO
operator are zero). Consequently, the SOCs between states
that have the same orbital occupations are small (this is
known as the El-Sayed rule),47,99 i.e., for a two-electron-
in-two-orbitals system, the SOC between S1 and T1 will
be nearly zero, whereas the SOC for S0 and T1 is not, as
seen from Eqs. (A7)–(A9). In many-electron systems such as
HSiX, the non-zero SOCs between 1A′′ and 3A′′ are due to
the non-dominant electronic configurations (those not derived
from HOMO-LUMO excitations) from the respective wave
functions, whereas the SOC between the 1A′ and 3A′′ states
is due to the dominant configurations. As illustrated in Fig. 1,
in the EOM-SF method together with a triplet reference,
such leading (“diradical”) configurations form a spin-complete
set; however, other configurations (e.g., excitations from
HOMO−1 to LUMO+1) sometimes miss the spin counterpart
needed for a spin-complete description.57,101 This results in a
small residual spin contamination of the spin-flip target states.
As one can see from the results for the S0/T1 couplings, this
spin incompleteness apparently has only a relatively minor
effect on the SOCs. However, since most of the non-zero
contributions in the S1/T1 case are due to these configurations,
the effect on the SOCs between these states is much more
pronounced.

The differences between the EOM-CCSD and LR-CCSD
values are small and vary between 4 and 15%. The difference
is likely to be due to the use of different basis sets.

1. Spin-orbit couplings in diradical systems

Here, we consider several systems with a significant
diradical character. We note that for these cases, the CCSD
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TABLE V. Spin-orbit couplings (cm−1) in HSiX (X=F,Cl,Br).a

LR-CCSDb,c EOM-EE-CCSDd EOM-SF-CCSDd

System 1el SOMF 1el SOMF 1el+2el 1el SOMF 1el+2el

HSiF ⟨11A′|H so
x |13A′′⟩ 59.82 45.14 68.11 51.60 51.56 65.61 49.73 49.69

⟨11A′|H so
y |13A′′⟩ −29.52 −22.14 33.54 25.50 25.49 31.99 24.30 24.30

SOCC(11A′/13A′′) 94.34 71.10 107.36 81.40 81.33 103.22 78.28 78.22
⟨11A′′|H so

z |13A′′⟩ 8.04 6.01 8.12 6.22 6.17 6.51 5.02 5.00

HSiCl ⟨11A′|H so
x |13A′′⟩ 75.17 59.38 85.85 67.86 67.79 81.93 64.74 64.67

⟨11A′|H so
y |13A′′⟩ −47.12 −37.58 52.76 42.25 42.21 −51.28 −41.07 −41.04

SOCC(11A′/13A′′) 125.47 99.38 142.51 113.05 112.93 136.68 108.43 108.32
⟨11A′′|H so

z |13A′′⟩ 11.99 9.60 11.66 9.52 9.48 7.67 6.23 6.22

HSiBr ⟨11A′|H so
x |13A′′⟩ 178.91 155.59 193.11 167.52 167.43 183.58 159.16 159.07

⟨11A′|H so
y |13A′′⟩ −127.19 −111.77 137.00 120.27 120.22 −138.60 −121.84 −121.79

SOCC(11A′/13A′′) 310.44 270.93 334.84 291.64 291.49 325.31 283.47 283.33
⟨11A′′|H so

z |13A′′⟩ 66.36 59.42 62.22 56.07 56.02 37.11 33.37 33.35

aThe Cartesian geometries from Ref. 37 were used (the individual components of SOCC are origin dependent).
bTo obtain the ⟨HSO

x ⟩ and ⟨HSO
y ⟩ components, the values from Ref. 37 were divided by

√
2.

cFrom Ref. 37 using AMFI (SOMF + 1-center approximation for all spin-orbit integrals). LR-CCSD used ANO2 basis with all
electrons correlated.
dcc-pCVTZ, all electrons correlated.

description of the reference is less satisfactory and the same
also holds for the target EOM-EE states. This problem can
easily be solved by using the EOM-SF method57,60 in which
one employs a well-behaved high-spin triplet reference.

We begin by considering several atoms with a triplet
ground state (C, O, Si, and S). The EOM-EE-CCSD results
are listed in Table VI. We compare the computed SOCCs
against the values reported in Ref. 35 which were derived
from the experimental data neglecting second-order effects.
Despite the diradical character of the singlet states, the EOM-
EE-CCSD SOCs are within 3% from the experimental values
for O, Si. For C and S the difference is 12%. Unfortunately,
we were not able to obtain EOM-SF results due to technical
difficulties with the treatment of non-Abelian point-group
symmetries.

In order to compare the EOM-SF with EOM-EE
approach, we consider a set of methylene-like diradicals,
CH2, NH+2 , SiH2, and PH+2 . We compute the SOCC, Eq. (6),
between the 3B1 and 1A1 states at the equilibrium geometry
of the triplet state. Note that these states differ in their orbital
occupations and are expected to yield larger SOCs (by virtue
of the El-Sayed rule47,99) than the 3B1 and 1B1 states (for
the latter, the SOCC is exactly zero at the C2v geometry due
to symmetry, but can become non-zero if the symmetry is
lowered to Cs). The results are summarized in Table VII. The
differences between the EOM-EE and EOM-SF values range
from 4%-5% (for SiH2 and PH+2) to 24% (CH2) and 102%
(NH+2); the wave-function analysis reveals that the discrepancy
correlates with the diradical character. For example, the
weights of the second leading configuration in the EOM-SF

FIG. 1. Left: Electronic configuration of the triplet state used as a reference in SF calculations. The singly occupied orbitals of the triplet state define the singly
occupied MO (SOMO) space; they correspond to the HOMO and LUMO orbitals in the closed-shell state. States derived from the HOMO-LUMO excitations
(i.e., usually S1 and T1) as well as the closed-shell ground state are dominated by “primary” SF excitations (marked by red boxes). These configurations generated
by excitations within the SOMO space form a spin-complete set even when only single excitations are included in the EOM ansatz. The excitations from doubly
occupied orbitals to virtuals (marked by the blue box) include formally single (the first determinant in the blue box), double (determinants 2-4), and triple (the
last determinant in the blue box) excitations from the high-spin triplet reference. Consequently, in standard SF calculations, these configurations do not form a
spin-complete set. While their contribution to the S0, S1, and T1 states is usually small, their effect on the respective SOCs varies. The SOC between the triplet
state and the closed-shell determinants is large; therefore, it is dominated by primary SF configurations. However, the SOC between the open-shell singlet (S1)
and the T1 state is expected to be small by virtue of the El-Sayed rule and is dominated by excitations outside the SOMO space.
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TABLE VI. Absolute values of the SOCC (cm−1) in selected 3P atoms.

Method C O Si S

EOM-EEa/cc-pCVTZ 15.06 72.66 74.43 216.93
EOM-EEa/cc-pCVQZb 15.63 79.49 76.19 220.60
Expt.c 13.98 77.40 73.70 194.62

aObtained within the SOMF approximation.
bFunctions with g and higher angular momentum omitted.
cFrom Ref. 35.

wave function of the 1A1 states are 0.06 (CH2), 0.25 (NH+2),
and 0.01 (SiH2 and PH+2). Thus, CCSD and EOM-EE are
able to tackle single-configurational SiH2 and PH+2 well. The
quality of the description deteriorates for CH2 with a moderate
diradical character and is of unacceptable quality for NH+2 due
to its even much more pronounced diradical character. The
differences in the respective singlet-triplet gaps (EOM-EE
versus EOM-SF) follow the same trend.102 For CH2 and SiH2,
the computed SOCCs can be compared with the results of
previous calculations. Gordon and co-workers3 reported MR-
CISD values of 8.43 cm−1 and 39.34 cm−1, respectively, using
the WTBS basis (a heavily contracted unpolarized basis of
a single-zeta quality).103 Havlas et al. reported100 CASSCF
values of 12.40 cm−1 and 56.37 cm−1. Thus, our results are in
a semi-quantitative agreement with the other calculations.

In order to gain a better understanding of the performance
of the EOM-EE and EOM-SF methods for diradicals, we
also consider the halocarbene series,104 HCX (X = F, Cl,
and Br), for which SOCs derived from accurate experimental
measurements have been recently reported.105 The diradical
character of the halocarbenes is less pronounced than for
the parent methylene, i.e., their ground states are singlets,
but the singlet-triplet gaps are small. The diradical character
increases in the following series: HCF < HCBr < HCCl,
as evidenced by the shrinking adiabatic singlet-triplet gap
(from 0.6 eV in HCF to ∼0.004 eV in HCBr).104 The
energy separation between the states varies strongly with the
geometry, i.e., vertical singlet triplet gaps differ significantly
from the adiabatic values. At the equilibrium triplet-state
geometries, the vertical EOM-EE/SF singlet-triplet gaps are
0.121/0.127 eV, −0.320/−0.332 eV, and −0.379/−0.397 for
HCF, HCCl, and HCBr, respectively (positive values mean
that the singlet lies below the triplet state).

Table VIII presents the SOCC between the S0 and T1
states (S0 is a closed-shell singlet state with a modest diradical
character). The SOCCs are computed at the equilibrium
geometries of the triplet states. We note that for HCF and
HCCl, the deviations from the experimental values are almost
the same for EOM-EE and EOM-SF, whereas for HCBr, EOM-
EE-CCSD shows a slightly better agreement.

TABLE VII. Absolute values of the SOCC (cm−1) between the 3B1 and 1A1
states in selected diradicals.a

Method CH2 NH+2 SiH2 PH+2

EOM-SFb 7.82 13.01 48.53 100.82
EOM-EEb 9.66 26.10 50.76 104.92

aThe SOCCs computed at the triplet-state equilibrium geometries from Ref. 102.
bObtained within the SOMF approximation and with the cc-pCVTZ basis set.

TABLE VIII. Absolute values of the SOCCs (cm−1) between the 3A′′ and
X1A′ states in HCX (X = F,Cl,Br).

Method Basis HCF HCCl HCBr

EOM-EEa cc-pCVTZ 40.87 83.39 302.48
cc-pCVQZb 41.14 84.05 306.94

EOM-SFa cc-pCVTZ 37.67 75.78 282.27
cc-pCVQZb 37.76 76.02 285.07

Expt.105 40c 81.3 350.9

aObtained within the SOMF approximation.
bFunctions with g and higher angular momentum omitted.
cEstimated by extrapolation.

IV. CONCLUSION

We presented the implementation of a scheme for the
computation of SOCs within the EOM-CC theory. We employ
a perturbative treatment in which the couplings are computed
as matrix elements of the BP Hamiltonian using non-
relativistic EOM-CC wave functions. We report both a full
two-electron treatment of the SOC as well as the use of
the SOMF approximation. The latter can be described as an
incomplete treatment of the two-electron part of the SOC
in which only the contributions from the separable part of
the 2DM are considered. This is equivalent to taking into
account only the contributions due to configurations in the
interacting states that differ by the state of one electron. Since
in most commonly considered cases (SOCs between the S0-
T1 states, splittings in doublet radicals, etc.), the interacting
states are indeed singly excited with respect to each other
(which can be quantified by the norm of the one-particle
transition DM88,89); this approximation works very well. Our
implementation is based on the expectation-value approach
to properties calculations rather than response theory.77 We
considered several examples focusing in particular on the
impact of different correlation treatments on the SOCs. The
main findings are as follows:

• The perturbative treatment of the SOC yields an
excellent agreement with the experimental values even
for systems with relatively heavy elements such as Br
and Se (4th row) for which the errors in the computed
SOCs were less than 5%. For lighter elements, the
typical errors (in comparison to the experimentally
derived values) are 1%-3%.

• In all cases, the SOMF approximation yields results
within 1-3 cm−1 from those of a full two-electron
treatment. One can monitor the norm of the one-particle
transition DM, ∥γ∥, in order to detect situations for
which a full two-electron treatment may be required.

• The basis-set requirements for SOC calculations are
more stringent than for energy calculations: quadruple-
zeta basis sets give practically converged results;
however, for 2nd and 3rd row elements, the use of a
triple-zeta basis is sufficient. Polarized-core basis sets
yield more accurate results; however, the performance
of polarized-valence basis sets appears to be already
reasonable.
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• The treatment of core electrons may have an impact on
the computed SOCs, even for states of predominantly
valence character. We observed that freezing the core
electrons may lead to errors around 10%-20% (SH,
SeH, AlH). For molecules composed of second-row
elements, however, the core electrons can be kept
frozen in the correlation calculations.

• The correlation treatment in the underlying zero-
order wave functions is important. We found that the
EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD,
and EOM-SF-CCSD wave functions yield SOCs which
agree well with each other (and with the experimental
values when available), provided that the target wave
functions are well described by a given EOM model. As
expected, using an EOM approach that yields a more
balanced description of the target states yields more
accurate results.

• In systems with significant diradical character, the
choice of the appropriate EOM-CC method requires
careful considerations. The EOM-EE and EOM-SF
values for the SOCs in such systems can differ by
a factor of 2. While EOM-SF usually yields a better
description of the diradical wave functions, the quality
of the SOC depends on the type of the states involved.
For the couplings between a closed-shell type and
triplet state in molecules with moderate diradicaloid
character, both methods yield very similar results.
When there is a very strong diradical character, the
EOM-SF method is superior to EOM-EE. However,
for the couplings between states of similar orbital
configuration (i.e., for the transitions violating the El-
Sayed rule99), such as T1 and S1 derived by a HOMO-
LUMO excitation or triplet and open-shell singlet states
in diradicals, EOM-SF is inferior to EOM-EE. We
anticipate that this problem can be fixed by making the
EOM-SF set of target configurations spin complete.

• The effect of spin contamination when using an open-
shell reference in the EOM treatment is small. The
errors of EOM-CCSD SOCs computed using an open-
shell reference were of the same magnitude (∼3%) as
when calculated using a closed-shell reference. The
use of a UHF instead of a ROHF reference does not
have a considerable impact in cases of a moderate spin
contamination of UHF wave functions.
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APPENDIX A: EXPRESSIONS FOR SPIN-ORBITAL
INTEGRALS
1. One-electron Breit-Pauli integrals

To derive programmable expressions for spin-orbit inte-
grals, it is convenient to employ ladder and projection
operators,

hso( j) · s( j) =

K

ZK

r3
jK

(r jK × p j) · s( j)

=

K

1
2

L+( j,K)s−( j),

+
1
2

L−( j,K)s+( j) + Lz( j,K)sz( j) (A1)

where

L+( j,K) ≡ ZK

r3
jK

�
r jK × p j

�
x
+ i

�
r jK × p j

�
y


, (A2)

L−( j,K) ≡ ZK

r3
jK

�
r jK × p j

�
x
− i

�
r jK × p j

�
y


, (A3)

Lz( j,K) ≡ ZK

r3
jK

�
r jK × p j

�
z
, (A4)

and

sx =
1
2
*
,

0 1
1 0

+
-
, sy =

1
2
*
,

0 −i
i 0

+
-
,

sz =
1
2
*
,

1 0
0 −1

+
-
, (A5)

s+( j) ≡ sx( j) + isy( j), s−( j) ≡ sx( j) − isy( j). (A6)

By performing spin integration, we can write the contributions
from each L component in the basis of molecular spin-orbitals
to each spin block of the SOC integrals,



⟨φα
p |Lz |φα

q⟩ ⟨φα
p | L−2 |φβ

q⟩
⟨φβ

p | L+2 |φα
q⟩ −⟨φβ

p |Lz |φβ
q⟩



=
1
2



0 ⟨φα
p |Lx |φβ

q⟩
⟨φβ

p |Lx |φα
q⟩ 0



+
1
2



0 −i⟨φα
p |Ly |φβ

q⟩
i⟨φβ

p |Ly |φα
q⟩ 0



+
1
2



⟨φα
p |Lz |φα

q⟩ 0

0 −⟨φβ
p |Lz |φβ

q⟩

.

Thus, the Cartesian components of the one-electron part of the
SOC operator can be written as follows:

h1e
z =

1
2


pq

(
Lz,αα
pq γαα

pq − Lz, ββ
pq γ

ββ
pq

)
, (A7)

h1e
x =

1
2


pq

(
Lx,αβ
pq γ

αβ
pq + Lx, βα

pq γ
βα
pq

)
, (A8)

h1e
y = −

i
2


pq

(
Ly,αβ
pq γ

αβ
pq − Ly,βα

pq γ
βα
pq

)
. (A9)
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To express ⟨φp |L{+−z}(K)|φq⟩, we need

L+(K) ≡ ZK

r3
K

[r⃗K × p⃗]x + i[r⃗K × p⃗]y


=
ZK

i


*
,
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r3
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∂ y
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-
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r3
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∂
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+
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, (A10)
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Lz(K) ≡ ZK
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=
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i
*
,
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r3
K

∂

∂ y
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r3
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∂
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+
-
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To evaluate the above expressions, the following integrals are
needed: 

φp

������

u − uK

r3
K

∂

∂v

������
φq


, u, v = {x, y, z}. (A13)

The required integrals can be computed using the
McMurchie-Davidson scheme.95 In the Q-Chem91 implemen-
tation, we reused the code for second geometrical derivative
Coulomb integrals as prescribed in Ref. 32.

Details for the implementation of the one-electron spin-
orbital integrals within the CFOUR program package92 can
be found in Refs. 93 and 94. We only note here that
this implementation follows closely Ref. 95 without use of
ladder and projection operator techniques. The integrals are
furthermore evaluated directly without computing geometrical
integral derivatives as intermediates.

2. Two-electron Breit-Pauli integrals

The two-electron part of SOC can be tackled in a similar
way,

hsoo( j, k) · [s( j) + 2s(k)]
=

1
r3
jk

(r⃗ jk × p⃗j) · [s( j) + 2s(k)]
= J+( j, k) [s−( j) + 2s−(k)] + Jz( j, k) [sz( j) + 2sz(k)]
+ J−( j, k) [s+( j) + 2s+(k)] , (A14)

where the following ladder and projection operators were used:
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z
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s+( j) ≡ 1
2
[sx( j) + isy( j)], s−( j) ≡ 1

2
[sx( j) − isy( j)].

(A18)

This yields
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3
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Finally, it is convenient to write down the expressions for
the Cartesian components of the two-electron SOC operator,

gx = 2Jαααβ
pqr s + Jααβα

pqr s + 2Jαβαα
pqr s + Jαβββ

pqr s
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Expansion of J in ⟨φpφq |J{+−z}(1,2)|φrφs⟩,
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Jz(1,2) ≡ 1
r3

12

[r⃗12 × p⃗1]z

=
1
i
*
,

x1 − x2

r3
12

∂

∂ y1
− y1 − y2

r3
12

∂

∂x1

+
-
. (A34)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.125.134.12 On: Wed, 12 Aug 2015 00:13:11



064102-14 Epifanovsky et al. J. Chem. Phys. 143, 064102 (2015)

Thus, the following integrals are needed:
d1 d2 φp(1)φq(2) u1 − u2

r3
12

∂φr(1)
∂v1

φs(2). (A35)

The required integrals can be computed using the
McMurchie-Davidson scheme.95 In the Q-Chem implemen-
tation, we reused the code for second geometrical derivative
Coulomb integrals.32 Due to the limitations of the integral-
derivative code in Q-Chem, it cannot handle g and higher
angular-momentum functions.

Details for the implementation of the two-electron spin-
orbitals within the CFOUR program package92 can be found
in Refs. 93 and 94. We only note here that this implementation
follows closely Ref. 95 without use of ladder and projection
operator techniques. The integrals are furthermore evaluated
directly without computing geometrical integral derivatives as
intermediates.

APPENDIX B: PROGRAMMABLE EXPRESSIONS
FOR UNSYMMETRIZED DENSITY MATRICES

Because of the symmetry of the spin-orbit integrals,
see Eq. (22), one needs to use unsymmetrized (or anti-
symmetrized) DMs, contrary to the case of properties and
expectation values corresponding to the operators that have
symmetric matrix representation such as gradients and dipole
moments. In the latter case, symmetrized DMs are commonly
used.86,106,107 The unsymmetrized one- and two-particle DMs
are given in the supplementary material.85

Since different blocks of γ and Γ are computed separately,
Eq. (24) needs to rewritten as follows:
pq

Ipqγpq =

i j

Ii jγi j +

ia

Iiaγia +

ai

Iaiγai +

ab

Iabγab

(B1)

and
pqr s

Jpqr sΓpqr s =

i jkl

Ji jklΓi jkl +

abcd

JabcdΓabcd

+

i jkd

Ji jkdΓi jkd +

ibkl

JibklΓibkl

+

i jcl

Ji jclΓi jcl +

ibkl

Ja jklΓa jkl

+

i jcd

Ji jcdΓi jcd +

abkl

JabklΓabkl

+

ibcl

JibclΓibcl +

a jkd

Ja jkdΓa jkd

+

ibcd

JibcdΓibcd +

abkd

JabkdΓabkd

+

abcl

JabclΓabcl +

a jcd

Ja jcdΓa jcd

+

a jcl

Ja jclΓa jcl +

ibkd

JibkdΓibkd.

(B2)

If anti-symmetrized γ and Γ are used, the number of
contractions can be reduced.

1. Evaluation of the separable part of the two-electron
contribution to SOC

In this section, we derive the spin-integrated equations
for the two-particle part of the SOC from Eq. (34). By
defining J(ρ,γ) = pqr s Jpqr sρprγqs and K(ρ,γ) = pqr s

Jpqr sρpsγqr , Eq. (34) can be rewritten as −K(γ, ρ) + J(γ, ρ)
− K(ρ,γ). This gives rise to the following programmable
expression for the separable part of two-electron contribution
to the SOC:

α2e
x = −2K(γαβ, ρα) + J(γαβ, ρα) − K(ρα, γαβ)
− 2K(ρα, γβα) − K(γαβ, ρβ) + J(γαβ, ρβ)
−K(γβα, ρα) + J(γβα, ρα) − 2K(ρβ, γαβ)
+ J(γβα, ρβ) − K(ρβ, γβα) − 2K(γβα, ρβ),

α2e
z = −3K(γαα, ρα) + 3J(γαα, ρα) − 3K(ρα, γαα)
− J(γαα, ρβ) + J(γββ, ρα)
+ 3K(γββ, ρβ) − 3J(γββ, ρβ) + 3K(ρβ, γββ).

In the case of a closed-shell reference ρ = ρα = ρβ, and
therefore the equations reduce to

α2e
x = −3K(γαβ + γβα, ρ) + 2J(γαβ + γβα, ρ)
− 3K(ρ,γαβ + γβα)

α2e
z = −3K(γαα − γββ, ρ) + 2J(γαα − γββ, ρ)
− 3K(ρ,γαα − γββ).

APPENDIX C: COMPUTING SOCs BETWEEN
DIFFERENT MULTIPLET COMPONENTS
BY CHANGING THE SPIN-QUANTIZATION AXIS
OR THE MOLECULAR ORIENTATION

The determination of the SOCC, Eq. (6), in principle
requires calculations for all components of a multiplet. For
example, for the SOC calculation in a closed-shell molecule,
one needs besides the Ms = 0 also the Ms = ±1 triplet states.
However, this need can be circumvented by changing the
orientation of the molecule (which is equivalent to changing
the spin-quantization axis), which has been, for example, ex-
ploited in Ref. 37. Such calculations provide additional means
of validating an implementation, as discussed in Sec. III B.
Below we describe this strategy by considering a linear
molecule as, for example, BH.

The expressions for the SOC given in the Appendix,
Eqs. (A7)–(A9), lead to the following selection rules3 for the
SOCs between singlet and triplet states of a linear molecule
(such as the S0/T1 states of BH):

⟨Ψ(s = 0,ms = 0)|H so |Ψ′(s = 1,ms = 0)⟩ = ⟨HSO
z ⟩ ≡ hz,

(C1)
⟨Ψ(s = 0,ms = 0)|H so |Ψ′(s = 1,ms = +1)⟩

= ⟨HSO
x ⟩ + ⟨HSO

y ⟩ ≡ 1
√

2
(hx + hy), (C2)

⟨Ψ(s = 0,ms = 0)|H so |Ψ′(s = 1,ms = −1)⟩
= (⟨Ψ(s = 0,ms = 0)|H so |Ψ′(s = 1,ms = 1)⟩)∗ . (C3)
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Thus,

|SOCC|2 = ⟨HSO
z ⟩2 + 2(⟨HSO

x ⟩2 + ⟨HSO
y ⟩2) = h2

x + h2
y + h2

z.

(C4)

One can compute the couplings between the singlet and the
Ms = ±1 components of the triplet without using the spin-
flipped states simply by rotating the molecule (which is
equivalent to changing the spin-quantization axis), as was done
in Ref. 37. In other words, the quantities defined above can be
computed as

hα ≡ ⟨Ψ(s = 0,ms = 0)|H so(α)|Ψ′(s = 1,ms = 0)⟩ (C5)

hi =
1
√

2
(h j + hk), (C6)

with α as the quantization axis.
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