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Anharmonic corrections for the out-of-plane (OPLA) vibrational modes of CH2Cl, CH2F, and CH3 radicals
have been calculated. For these radicals, it is possible to describe the OPLA motion within a simple one-
dimensional model based on the adiabatic separation of the (slowest) OPLA mode from all other vibrations.
The effective potentials have been calculated by CCSD(T) and DFT/B3LYP methods with
6-311(+,+)G(3df,2pd) basis sets. It is found that halogen substitution increases the anharmonicities
dramatically, i.e., from 19% in CH3 up to about(100% in CH2Cl and CH2F. The resulting frequencies of the
fundamental OPLA transition are in good agreement with the experimental values. In the case of CH2F, the
large anharmonicity in the OPLA mode results in a wave function delocalized over the two minima of the
double well potential. This reconciles the experimentally determined planar (C2V) structure with the calculated
pyramidal (Cs) equilibrium geometry.

I. Introduction

The methyl radical in its ground electronic state possesses a
rather rigid, planar (D3h) structure, and the frequency of its out-
of-plane (OPLA) vibration is about 600 cm-1.1-5 This is easily
rationalized in terms of hybridization theory: the unpaired
electron occupies the 2pz orbital of carbon, while the 2s, 2px,
and 2py orbitals form three equivalentσCH bonds (sp2-hybridiza-
tion). Obviously, the repulsion between the unpaired electron
and those involved in the CH bonds is minimal for the planar
structure, and it rapidly increases for large amplitude OPLA
displacements. That is why the anharmonicity of the OPLA
mode isnegatiVe (i.e., the potential steepness increases with a
vibrational excitation), as opposed to thepositiVeanharmonicity
found for a stretching Morse-type potential. Such anharmonicity
(about 11% from the experimental fundamental frequencyω01

value) for the OPLA mode of the methyl radical has been
postulated by Riveros6 in order to explain the deviation of the
observed2 isotope shifts of the OPLA fundamentals from the
values calculated assuming a planar structure1 and harmonic
OPLA motion.

When one or more hydrogen atoms are substituted by
halogens, the interaction of the lone pairs of the latter with the
unpaired electron changes the bonding considerably: the
carbon-halogen bonds contract and the corresponding force
constants increase,7-11 some radicals assume pyramidal struc-
tures,7,8 etc. (see ref 12 for a summary of the spectroscopic data).
Recently, in collaboration with Reisler and co-workers, we have
analyzed13,14the bonding in the ground and electronically excited
states of CH2X (X ) F, Cl) radicals: our ab initio calculations
have shown13 that a1/2(n-p)-π bond forms between the chlorine
and carbon atoms in CH2Cl, whereas in CH2F no significant
electron delocalization is obtained because of the much larger
difference in the electronegativities of carbon and fluorine. The
present work demonstrates that halogen substitution also
increases dramatically the anharmonicity of the OPLA mode.

Electronic structure calculations of halogen-substituted methyl
radicals are difficult.15-19 The ground state equilibrium geom-

etries and frequencies of well-behaved molecules are usually
reproduced accurately by high-level ab initio calculations, e.g.,
coupled-cluster method with single and double substitutions
(CCSD)20 and perturbative account of triple excitations [CCSD-
(T)].21 However, in the case of halogen-substituted methyl
radicals, the discrepancy between theory and experiment is
alarmingly large: whiletheorypredictsnonplanarstructures,15,17-19

the experiments consistently yield planar geometries with well-
defined minima.22-27 For example, the calculated equilibrium
geometry of the CH2F radical deviates from the experimentally
determined22-24 planar structure by 30°,17-19 and the calculated
harmonic frequency of the umbrella mode is twice higher than
the experimental value of theω01 transition.23,24 In the case of
CH2Cl, the situation is reversed: the calculated harmonic
frequency is twicelower than the experimentalω01.9,10

The main purpose of the present study is to identify the origin
of this large discrepancy, e.g., a failure of ab initio theory, an
erroneous interpretation of the experiment, or unexpected
subtleties in the electronic structure of these seemingly simple
species. Indeed, the results of ab initio calculations for open-
shell species have to be scrutinized carefully; in addition to the
obvious observation that the requirements for the one-particle
basis set are higher than for closed shell molecules (due to the
more diffuse nature of the unpaired electron), the doublet
radicals are known to exhibit artifactual spatial symmetry
breaking,28 which often results in anomalous vibrational fre-
quencies and incorrect structures.29-40

We have found that the potential energy surfaces of CH2X
and CH3 radicals are described accurately by CCSD(T) theory,
and that the source of the discrepancy mentioned above is in
the anomalously large anharmonicity in the OPLA mode, which
is roughly equal to the harmonic frequency. Density functional
theory (DFT)41 with B3LYP exchange-correlation functional42

yields similar results. The good performance of DFT/B3LYP
is in agreement with recent benchmark studies of the equilibrium
properties of doublet radicals.43-45

There are numerous examples of highly anharmonic systems,
especially among van der Waals clusters. In the extreme case
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of weekly interacting He atoms, the zero-point energy is so high
that the vibrational wave function is delocalized over several
minima of the potential energy surface and, therefore, bears no
resemblance to localized harmonic wave functions.46 In the less
dramatic case of Ar clusters, the anharmonic corrections change
the values of the fundamental transitions by 10-25% of the
corresponding harmonic frequencies.47 Large anharmonicities,
i.e., up to 100%, have been reported for theintermolecular
modes in water clusters.48 However, the anharmonicities of
intramolecular vibrations are usually much smaller: 1-5% is
a typical value.45,49-55,56-58 In this context, the anharmonicities
of the OPLA motion in the halogen-substituted methyl radicals
are exceptionally large.

The paper is organized as follows: section II describes the
theoretical model, section IIIA outlines the computational details,
sections IIIB, IIIC, and IIID present the calculated equilibrium
structures and vibrational spectra. Our final remarks and
conclusions are given in section IV.

II. Theory

In very small systems, where it is possible to obtain a nearly
global analytic fit of the multidimensional surface, the vibra-
tional problem can be solved with very high accuracy.52 In
polyatomic systems, the moderate anharmonicity can be ac-
counted for by calculating higher, i.e., third and fourth,
derivatives with subsequent second-order perturbative theoretical
treatment of the fundamental vibrational frequencies.49-51,53,56-59

To treat systems with larger anharmonicities, the vibrational
self-consistent field (VSCF) method can be applied.60-63 The
approximation recently proposed by Chaban and Gerber for
multidimensional integral evaluation has enabled the application
of the VSCF method to very large systems.54,55Below we outline
a less general approach, which can be employed to calculate
the vibrational wave functions for OPLA motions in CH2X
radicals. A similar strategy has been employed by Johnson and
Hudgens in their calculations of anharmonic effects in the CH2-
OH radical.64

For an M-atomic system, it is customary to use normal
coordinates{Qi}i)1

N (where N ) 3M - 6 for a nonlinear
molecule). The nonunitary transformations between Cartesian
({Xi}i)1

3M ) and normal ({Qi}i)1
N ) coordinates are defined as

follows:

whereI is anN × N unit matrix, Iij ) δij. The transformation
matrixesR (N × 3M) andL (3M × N) are found by solving
the normal mode problem:

whereT is a diagonal matrix composed of atomic masses,ωi

is the vibrational frequency of modei, andU is the Hessian
matrix evaluated at the equilibrium geometry{Xi

eq}:

In normal coordinates, the Schro¨dinger equation for the
N-dimensional vibrational wave functionΨ(Q1,...,QN) reads

where V(Q1,...,QN) is the full potential energy surface, and
atomic masses have been absorbed into the transformationR
from eq 1. In the spirit of the VSCF approximation, we employ
a separable ansatz for the wave function:

whereθ ≡ Q1 is the normal coordinate of the OPLA mode.
The wave functionsên′(θ) and Φn′′(Q2,...,QN) are defined by
the two coupled equations:

whereVΦ(θ) andVê(Q2,...,QN) are the mean-field potentials:

Since we are interested in the OPLA fundamental only (i.e.,n′
) 0, 1), all the other vibrational degrees of freedom can be
assumed to be in their ground state. That is why only the lowest
Φn′′(Q2,...,QN) is needed, i.e.,n′′ ) 0.

At this point, we introduce additional approximations to the
mean-field separation of the OPLA motion. Instead of solving
eqs 10-13 self-consistently, we assume that the wave function
Φ(Q2,...,QN) has the following simple form:

whereδ stands for theδ-function, and the choice of optimal
coordinates{Qi

opt }i)2
N is described below. With this approxi-

mation, the effective potential for the OPLA motion assumes
the following form:

We consider two different choices of parameters{Qi
opt}i)2

N

from eqs 14 and 15. The first model completely neglects the
interaction between modes, and thus assumes that when atoms
move along the OPLA coordinate, all the other coordinates do
not change, i.e.,Qi

opt ≡ Qi
eq:

Qi ) ∑
j)1

3M

RijXj (1)

Xi ) ∑
j)1

N

LijQj (2)

RL ) I (3)

UL ) TL Λ Λij ) δijωi
2 (4)

L+TL ) I (5)

R ) L+T (6)

Uij )
∂

2V(X1
eq,...,X3M

eq )

∂Xi∂Xj
(7)

(-
1

2
∑
i)1

N ∂
2

∂Qi
2

+ V(Q1,...,QN))Ψn(Q1,...,QN) )

EnΨn(Q1,...,QN), (8)

Ψn(Q1,...,QN) ) ên′(θ)·Φn′′(Q2,...,QN) (9)

(- 1
2

∂
2

∂θ2
+ VΦ(θ))ên′(θ) ) εn′ên′(θ) (10)

(-
1

2
∑
i)2

N ∂
2

∂Qi
2

+ Vê(Q2,...,QN)) Φn′′(Q2,...,QN) )

εn′′Φn′′(Q2,...,QN) (11)

VΦ(θ) ) 〈Φ(Q2,...,QN)|V(θ,Q2,...,QN)|Φ(Q2,...,QN)〉Q2,...,QN

(12)

Vê(Q2,...,QN) ) 〈ê(θ)|V(θ,Q2,...,QN)|ê(θ)〉θ (13)

Φ(Q2,...,QN) ) ∏
i)2

N

δ(Qi - Qi
opt), (14)

VΦ(θ) ≈ V(θ,Q2
opt,...,QN

opt) (15)

VΦ(θ) ≈ V(θ,Q2
eq,Q3

eq,...,QN
eq) (16)
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Drawing from the analogy with the electronic structure problem,
we call eq 16 thediabatic approximation.

Alternatively, one can consider a model that assumes that
the motions of all the other coordinates are much faster than
that of the OPLA vibration. In this model, all the other degrees
of freedom can simultaneously adjust to the current value of
the OPLA coordinate. Thus,{Qi

opt}i)2
N are found by optimizing

the potentialV(θ,Q2,...,QN) with respect to{Qi}i)2
N and at a

fixed value ofθ:

We call this model theadiabatic approximation. The low
frequency of the OPLA motion, which is at least twice slower
than any other vibration in these radicals, justifies the adiabatic
separation of the slow and fast motions. Due to symmetry
considerations, the diabatic and adiabatic OPLA effective
potentials have an identical harmonic part (see Appendix).

Our results show that the approximate account of the
interaction between the modes in the adiabatic model yields a
better agreement with the experiment. However, even the
oversimplified diabatic model is capable of describing the
anharmonicity in a qualitatively correct way.

III. Results and Discussion

A. Computational Details. We report results obtained with
the CCSD(T)21 and DFT/B3LYP41,42 methods. The CCSD(T)
calculations have been performed with the ACES II electron-
ic structure program.65 For DFT calculations, the Q-Chem ab
initio package66 has been used. All calculations employ the
6-311(+,+)G(3df,3pd) basis set, derived from the polarized
split-valence 6-311G(d,p) basis67,68 by augmenting it by ad-

ditional sets of polarization and diffuse functions.69,70 We find
that the heavy polarization is crucial for the correct description
of the equilibrium structures of halogen substituted methyl
radicals: for example, CH2Cl becomes pyramidal in smaller
basis sets.

The CCSD(T) harmonic frequencies are calculated by using
second analytic derivatives,65 at the geometries optimized with
the CCSD(T) method. Finite differences of analytically com-
puted first-order derivatives are used to calculate the harmonic
frequencies with the DFT/B3LYP method,66 at the geometries
optimized with DFT/B3LYP.

The optimized geometries of the CH2X radicals are given in
Table 1. The rotational constants calculated at these equilibrium
geometries are summarized in Table 2. Since the calculated
rotational constants are not vibrationally averaged, the com-
parison with experiment is not straightforward.

The procedure for calculating the one-dimensional diabatic
and adiabatic effective potentials (eqs 15-17) is outlined below.
First, geometry optimization with aC2V symmetry constraint
and normal-mode analysis are performed at each level of theory.
This yields the transformation matrixesR andL from the eqs 1
and 2. Second, the equilibrium values of the normal coordinates,
{Qeq}, are calculated from the equilibrium values of the
Cartesian coordinates,{Xeq}, by using eq 1. Finally, a grid of
θ-values and the corresponding optimal values of the other
coordinates,{Qi

opt}i)2
N , are generated and the total energies are

computed at these points.
For the diabatic effective potentials, a nonuniform grid of

displacements alongθ (i.e., the OPLA normal coordinate) is
generated. All the other normal coordinates are frozen at their
equilibrium values. The corresponding Cartesian geometries are
computed by using eq 2. To calculate the adiabatic effective
potentials, a grid of values for the torsion angle is generated
and the geometry is optimized with respect to all the other

TABLE 1: Calculated Ground State Geometries of CH2X (X ) Cl, F, H) Radicals

symm rCH, Å rCX, Å RHCH Θb Enuc Etot

CCSD(T)/6-311(+,+)G(3df,3pd)a

CH2Cl (X2B1) C2V 1.076 1.691 124.17 180 45.620 937 -499.007 703
CH2F (X2A′) Cs 1.079 1.335 124.11 153.11 32.246 535 -138.935 120
CH2F (X2B1) C2V 1.076 1.332 127.60 180 32.274 065 -138.934 617
CH3 (X2A2′′) D3h 1.0783 120 180 9.683 711 -39.783 994

DFT(B3LYP)/6-311(+,+)G(3df,3pd)a

CH2Cl (X2B1) C2V 1.076 1.698 124.41 180 45.479 968 -499.490 818
CH2F (X2A′) Cs 1.079 1.338 125.13 156.70 32.180 494 -139.128 583
CH2F (X2B1) C2V 1.076 1.336 127.79 180 32.201 855 -139.128 331
CH3 (X2A2′′) D3h 1.0779 120 180 9.687 270 -39.858 366

a Pure angular momentum spherical harmonics are used.b Dihedral HCXH angle.

TABLE 2: Ground State Rotational Constants (MHz) for CH 2X Radicals (X ) Cl, F, H)a

method A B C

CH2Cl
CCSD(T)/C2V 277 359 16 016.398 15 142.006
DFT(B3LYP)/C2V 277 071 15 899.166 15 036.336
exp25 274 380( 78 15 948.0282( 126 15 057.0443( 123

CH2F
CCSD(T)/C2V 268 993 31 177.081 27 938.892
CCSD(T)/Cs 264 292 31 102.495 28 074.005
DFT(B3LYP)/C2V 268 352 31 019.521 27 805.420
DFT(B3LYP)/Cs 264 835 30 962.334 27 904.259
exp23 265 200 30 948.322(27) 27 727.773(27)

CH3

CCSD(T)/D3h 287 526.470 287 526.470 143 763.235
DFT(B3LYP)/D3h 287 738.378 287 738.163 143 869.135
exp5 287 145(5) 287 145(5) 142 165(20)

a Theoretical values are calculated at the equilibrium geometries and therefore do not include vibrational averaging.

∂V(θ,Q2,...,QN)

∂Qi
|Qi)Qi

opt
) 0, i ) 2, ...,N (17)
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internal coordinates at each value of the torsion angle. By using
the transformation matrixR from eq 1, these Cartesian
coordinates are transformed to the normal coordinates. This
yields values of the normal coordinateθ that correspond to a
fixed torsion angle, and optimum values of all the other internal
coordinates. This procedure is equivalent to a constrained
geometry optimization in the normal coordinates, with the OPLA
normal coordinate being frozen at a certain value ofθ.

The energy points calculated in this way are then used to
determine the parameters of the following analytical form of
the effective potential:

The analytical fit of the potential allows extrapolation of the
potential function beyond the range in which the energy points
are calculated. We have found that powers ofθ higher than
fourth are necessary for an accurate fit, e.g., to reproduce the
correct second derivative of the effective potentials. The
harmonic frequencies of our effective OPLA potentials param-
etrized by eq 18 agree within 1 cm-1 with the harmonic
frequencies calculated by solving the normal mode problem at
the optimized geometry.

Anharmonic frequencies,ω01, are calculated by numerically
solving the one-dimensional Schro¨dinger eq 10 with potentials
(18) by using the program LEVEL.71

B. CH2Cl. The calculated harmonic frequencies of the CH2-
Cl radical are summarized in Table 3. The deviation of the
calculated harmonic frequencies from the corresponding ex-
perimental values does not exceed 5% for the CCl stretch and
CH2 scissors. However the calculated value of the OPLA
harmonic frequency is twice lower than the experimental value
of ω01. The agreement between the calculated and the experi-
mental values seems to be better for DFT/B3LYP than for the
reliable and accurate CCSD(T) method.

The parameters of the analytical fit of the diabatic and
adiabatic effective potentials (see section II) are given in Table
4. The CCSD(T) adiabatic effective potential is shown in Figure
1, along with the corresponding harmonic potential (dashed line).
Figure 1 illustrates the strikingly large negative anharmonicity
of the OPLA vibrational mode of CH2Cl. The calculated value
of the 0-1 OPLA transition is 422 cm-1, more than twice higher
than the harmonic frequency of 168 cm-1. The former is in a
good agreement with the experimental value of 402 cm-1. The
DFT/B3LYP adiabatic effective potential yields a similar value
(434 cm-1). Therefore, both models give anharmonic corrections
to the OPLA mode of CH2Cl that are roughly equal in magnitude

to the harmonic frequency. The OPLA fundamental transition
energy calculated by CCSD(T) deviates from the experiment
by 5%, and the DFT/B3LYP value by 8%. The amplitude of
the zero point motion for the OPLA mode is rather large: the
turning points of the anharmonic potential from Figure 1
correspond to a 26° deviation from a planar structure.

As expected, the diabatic effective potentials are too steep
because the relaxation in the other coordinates is neglected.
Thus, the diabatic model overestimates the anharmonicities.
The values of the diabaticω01 are 543 and 554 cm-1 for the
CCSD(T) and DFT/B3LYP methods, respectively. Nevertheless,
even this oversimplified model produces a better estimate for
ω01 than the harmonic model.

It is interesting to compare our OPLA effective potential with
that reconstructed by Andrews and Smith.10 Their anharmonic
quartic potential has been parametrized to reproduce the OPLA
vibrational frequencies of the deuterated CH2Cl radicals. The
harmonic frequency calculated with their potential is 262 cm-1.
This value is 94 cm-1 above the CCSD(T) harmonic frequency
of 168 cm-1. This large discrepancy is due to the absence of
higher powers ofθ in their effective potential.

C. CH2F. The calculated harmonic frequencies for the CH2F
radical are presented in Table 5. For this radical, the OPLA
harmonic frequency calculated at the optimized equilibrium
geometry (Cs structure) is about twice higher than the experi-
mentalω01 for the OPLA fundamental transition (Hudgens et
al. recommend 260( 30 cm-1,24 and Endo et. al. recommend
300( 30 cm-1 23). This situation is exactly the reverse of that
in the CH2Cl radical, where the harmonic OPLA frequency is
twice lower than the experimentalω01. Similarly to CH2Cl, the

TABLE 3: CH 2Cl• Calculated Harmonic Vibrational Frequencies ωe and Experimental Valuesω01, cm-1 a

method
CCl stretch

a1

CH2 scissors
a1

OPLA
b1

CH2 rock
b2

CH2 s-stretch
a1

CH2 a-stretch
b2

CCSD(T) 868 (5%) 1434 (3%) 168 (58%) 1004 3179 3335
DFT 835 (1%) 1415 (2%) 229 (43%) 997 3169 3320
exp 82710,9 139110 40210,9

a The relative differences,∆ ) (ωe - ω01)/ω01·100%, are shown in parentheses.

TABLE 4: CH 2Cl• Parameters (10-6 a.u.) of the Analytical
Fit (18) of the OPLA Effective Potentials

method a2 a4 a6 a8

Diabatic Potential
CCSD(T) 0.295 18 0.003 054 44-4.13673× 10-7 3.3010× 10-11

DFT 0.558 95 0.002 923 34-3.86651× 10-7 2.8935× 10-11

Adiabatic Potential
CCSD(T) 0.294 43 0.001 181 34-3.6527× 10-8 5.750× 10-12

DFT 0.544 87 0.001 092 29-3.2434× 10-8 3.480× 10-12

V(θ) ) a2θ
2 + a4θ

4 + a6θ
6 + a8θ

8 (18)
Figure 1. Harmonic (dashed line) and anharmonic (solid line) OPLA
adiabatic effective potentials for the CH2Cl radical [CCSD(T)/
6-311(+,+)G(3df,3pd)]. The positions of the zero and first excited
vibrational levels are shown by horizontal lines. The calculated and
experimental values for the fundamental transition are shown by vertical
arrows.
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discrepancy between the theoretical harmonic frequencies and
the experimental value ofω01 is larger for CCSD(T) than for
DFT.

The parameters of the analytical fit of the diabatic and
adiabatic effective potentials (see section II) are given in Table
6. The CCSD(T) adiabatic effective potential is shown in Figure
2, as well as the corresponding harmonic potential. As shown
in Figure 2, the zero-point vibrational level is 57 cm-1 above
the barrier between the two nonplanar (Cs) minima. The
amplitude of the zero-point OPLA vibration of CH2F is very
large: the turning points of the effective potential (Figure 2)
correspond to the 38° deviation from the planar structure (vs
26° in CH2Cl).

These results reconcile the theoretical predictions of a
nonplanar equilibrium structure (with a deviation from planarity
of about 27°) with the experimental results (microwave spec-
troscopy) that strongly support aC2V symmetry.22,23 Planar or
near-planar (<5° deviation from planarity) geometry has also
been suggested by the electron spin-resonance (ESR) study of
Fessenden and Schuler.72 A double-well potential with two

strongly nonplanar minima has been ruled out as inconsistent
with the measured value of the carbon hyperfine coupling
constant:72 even with the zero-point energy being above the
barrier, the large-amplitude zero-point vibrations in the double
well potential were estimated to cause a large increase in the
vibrationally averaged carbon hyperfine coupling constant (thus
revealing the nonplanar equilibrium structure of the radical).
However, that estimate was based on the complete orbital
following model,73 which was shown to fail in similar circum-
stances, i.e., for the CH3 radical.74 To check the validity of the
complete orbital following assumption, we performed Natural
Bond Orbital analysis75 of the CH2F density at the optimized
(strongly nonplanar) geometry. We find that the unpaired
electron has only 6% s-character, whereas the complete orbital
following model predicts about 14% s-character.73,76 This
demonstrates incomplete orbital following and reconciles the
small value of the carbon hyperfine coupling constant72 with
the large amplitude zero-point OPLA motion in the double-
well potential shown in Figure 2.

The calculated value ofω01, 299 cm-1 [CCSD(T), adiabatic
model] is in the excellent agreement with the experimental value
of about 300 cm-1 23,24(Figure 2). The adiabatic DFT potential
results in a slightly higher value of 332 cm-1. Similarly to the
CH2Cl case, the diabatic model overestimates the frequencies.
A better performance of the adiabatic separation of the OPLA
motion in CH2F has been anticipated, because of the larger
difference in frequencies between the OPLA vibration and all
the other modes.

For CH2F, the difference between the harmonic and anhar-
monic wave functions is even more dramatic than for CH2Cl.
The harmonic frequency is either too high (if calculated at the
optimized Cs geometry), or imaginary (if calculated at the
optimizedC2V geometry). These frequencies reflect the large
local curvature at theCs stationary point or the negative
curvature at the barrier, but have no relation to the real
vibrational levels of CH2F.

D. CH3. Table 7 summarizes the calculated CH3 harmonic
frequencies and the experimental values of its fundamental
transitions. For CH3, the discrepancy between the calculated
harmonic OPLA frequencies and the experimental value of the
transition energyω01 is not as remarkable as it is for CH2Cl
and CH2F. Nevertheless, the relative difference is still at least
four times larger than for any other mode. As seen from the
Table 7, this discrepancy is larger for CCSD(T) than for DFT
(16% versus 11%). Since the molecule has been extensively
studied both theoretically77-79 and experimentally,4-6,80-90 it is
instructive to investigate how our model performs in this case.

The CCSD(T)/6-311(+,+)G(3df,3pd) harmonic OPLA fre-
quency is 507 cm-1, which is considerably lower than the
harmonic frequency of 544 cm-1 derived from the Riveros fit.6

Moreover, improving the one-electron basis set further lowers
the harmonic frequency, e.g., the CCSD(T)/aug-cc-pVTZ value
is 497 cm-1.79 Similarly to the CH2Cl case, we attribute this
difference to the absence of higher than quartic terms in the
Riveros potential.

TABLE 5: CH 2F• Calculated Harmonic Vibrational Frequencies ωe and Experimental Valuesω01, cm-1 a

method
CF stretch

a1

CH2 scissors
a1

OPLA
b1

CH2 rock
b2

CH2 s-stretch
a1

CH2 a-stretch
b2

CCSD(T)/C2V 1208 (3%) 1478 (2%) 437i 1167 3173 3347
DFT/C2V 1184 (1%) 1439 (5%) 361i 1130 3120 3290
CCSD(T)/Cs 1199 (2%) 1482 (2%) 585 (95%) 1185 3142 3302
DFT/Cs 1177 (0.6%) 1440 (5%) 482 (61%) 1142 3093 3254
exp 117091,92 151592 300( 3023,24

a The relative differences,∆ ) (ωe - ω01)/ω01·100%, are shown in parentheses.

TABLE 6: CH 2F• Parameters (10-6 a.u.) of the Analytical
Fit (18) of the OPLA Effective Potentials

method a2 a4 a6 a8

Diabatic Potential
CCSD(T) -1.988 28 0.003 721 25-5.589 76× 10-7 5.335 84× 10-11

DFT -1.318 26 0.003 365 44-4.555 63× 10-7 3.458 19× 10-11

Adiabatic Potential
CCSD(T) -1.986 33 0.002 059 17-2.055 65× 10-7 2.8313× 10-11

DFT -1.312 81 0.001 754 63-1.225 98× 10-7 1.1967× 10-11

Figure 2. Anharmonic (solid line) OPLA adiabatic effective potential
for the CH2F radical [CCSD(T)/6-311(+,+)G(3df,3pd)]. The dashed
curve represents the harmonic part of the potential at the optimized
nonplanar (Cs) geometry. The corresponding harmonic frequency is
also shown. The negative curvature at the planar (C2V) geometry (i.e.,
at the barrier) yields the imaginary frequency of 437i cm-1. The
positions of the zero and first excited levels are shown by horizontal
lines. The calculated and experimental values of the OPLA fundamental
transition are shown by vertical arrows.
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The parameters for the analytical fit of the diabatic and
adiabatic effective potentials (see section II) are given in Table
8. The CCSD(T) adiabatic effective potential is shown in Figure
3, as well as the corresponding harmonic potential. The
corresponding anharmonic frequency is 624 cm-1. The adia-
batic DFT value is 645 cm-1. The deviation of the adia-
batic anharmonicω01 from the experiment is thus 4.5% for
CCSD(T), and 6% for DFT model. As in the previous two cases,
the anharmonic frequencies calculated using the diabatic effec-
tive potential overestimate the experimental transition energy
by about 11% for CCSD(T), and 14% for DFT method.

Even though the frequency of the OPLA motion is higher
than in CH2Cl, the amplitude of the zero-point motion in the
potential shown in Figure 3 is almost the same as in the case of
CH2Cl: the turning points correspond to a 25° deviation from
planarity (vs 26° in CH2Cl).

IV. Conclusions

We find large anharmonic corrections for the OPLA vibra-
tional mode of the CH2Cl, CH2F, and CH3 radicals. For these

radicals, it is possible to describe the OPLA motion within a
simple one-dimensional model on the basis of the adiabatic
separation of the (slowest) OPLA mode from all the other
vibrations. The OPLA vibrational frequencies of all three
radicals are summarized in Tables 9 and 10. We find that
halogen substitution increases the anharmonicities dramatically,
i.e., from 19% in CH3 up to about(100% in CH2Cl and CH2F.
The resulting frequencies of the fundamental OPLA transitions
are in good agreement with the experimental values (the
deviations are about 5%, similar to the other modes). In the
case of CH2F, the large anharmonicity in the OPLA mode results
in a wave function delocalized over two minima of the double
well potential. This reconciles the experimentally determined
planar (C2V) structure with the calculated pyramidal (Cs)
equilibrium geometry.

As demonstrated in Tables 9 and 10, the agreement of the
CCSD(T) model with the experiment is consistently better than
that of DFT. Nevertheless, DFT/B3LYP also yields reasonably
accurate anharmonic potentials for the OPLA motion. This is
consistent with other recent benchmark studies of radicals.43,44
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Appendix

Below we prove that the adiabatic and diabatic effective
OPLA potentials (15) have identical harmonic parts. As a result,
the approximate account of the interaction between modes by
the adiabatic model affects only quartic and higher terms of
the effective OPLA potential, leaving the harmonic part
unchanged.

TABLE 7: CH 3
• Calculated Harmonic Vibrational Frequencies ωe and Experimental Valuesω01, cm-1 a

method
CH stretch

a1′
CH2 scissors & rock

e′
OPLA

a2′′
CH2 s,a-stretch

e′
CCSD(T) 3104 (3%) 1424 (2%) 507 (16%) 3293 (4%)
DFT 3109 (3%) 1408 (0.4%) 542 (11%) 3287 (4%)
exp 300480-83 140284,85 6075,4 316186-90,85

a The relative differences,∆ ) (ωe - ω01)/ω01·100%, are shown in parentheses.

TABLE 8: CH 3
• Parameters (10-6 a.u.) of the Analytical Fit

(18) of the OPLA Effective Potentials

method a2 a4 a6 a8

Diabatic Potential
CCSD(T) 2.670 68 0.002 523 17-3.0602× 10-7 2.468× 10-11

DFT 3.069 87 0.002 300 44-2.1121× 10-7 3.74× 10-12

Adiabatic Potential
CCSD(T) 2.668 94 0.001 512 57-1.3727× 10-7 2.243× 10-11

DFT 3.107 64 0.001 248 58-4.33× 10-9 8.17× 10-12

Figure 3. Harmonic (dashed line) and anharmonic (solid line) OPLA
adiabatic effective potentials for the CH3 radical [CCSD(T)/
6-311(+,+)G(3df,3pd)]. The positions of the zero and first excited
levels are shown by horizontal lines. The calculated and experimental
values for the OPLA fundamental transition are shown by vertical
arrows.

TABLE 9: Calculated and Experimental Values for the
OPLA Fundamental Transition, cm-1 a

species ωe ω01
diab ω01

adiab exp

CH2Cl 168 543 422 402
CH2F 437i 419 299 300( 30
CH3 507 672 624 607

a The OPLA adiabatic and diabatic effective potentials are calculated
at the CCSD(T)/6-311++G(3df,3pd) level of theory.

TABLE 10: Calculated and Experimental Values for the
OPLA Fundamental Transition, cm-1 a

species ωe ω01
diab ω01

adiab exp

CH2Cl 229 554 434 402
CH2F 361i 447 332 300( 30
CH3 542 689 645 606

a The OPLA adiabatic and diabatic effective potentials are calculated
at the DFT(B3LYP)/6-311++G(3df,3pd) level of theory.
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The proof is based on the following: (i) the OPLA normal
mode does not belong to the fully symmetric irreducible
representation (irrep) (e.g., it is b1 in C2V or a2′′ in D3h), and (ii)
the OPLA vibration is the only mode in this irrep. The above
result is valid for any mode that satisfies (i) and (ii). However,
for the sake of clarity the discussion below is focused on the
specific case of the OPLA mode.

With (i) and (ii) satisfied for the OPLA mode, the global
potential energy surface is symmetric with respect to positive
and negative displacements along the OPLA coordinate:

whereθ denotes the normal coordinate for the OPLA motion.
The potential along any fully symmetric coordinate is necessarily
asymmetric (consider for example the symmetric CH stretch).
Moreover, eq 19 would not hold ifθ were not the only mode
in its irrep, because the displacements along other modes from
the same irrep would lower the symmetry of the system such
that θ would become a fully symmetric coordinate at this
reduced symmetry.

The derivative of the symmetric potential (19) with respect
to anyQi is also symmetric with respect to positive and negative
distortions alongθ:

Therefore, the{Qi
opt}i)2

N defined by eq 17 are also even
functions ofθ:

which means that the derivative of the{Qi
opt(θ)} with respect

to θ is zero atθ ) 0:

Let us now consider the Taylor expansion of the effective
potential of eq 15,VΦ(θ), aroundθ ) 0 and analyze its quadratic
terms with respect toθ. For the diabatic effective potential, we
have

where terms with higher powers ofθ are neglected (the term
linear in θ is absent becauseθ ) 0 corresponds to the
equilibrium geometry, i.e.,∂V/∂θ|θ)0 ) 0). The potential above
is simply the harmonic potential for the OPLA normal mode
with the curvature defined by the second derivative at the
equilibrium geometry.

Likewise, for the adiabatic effective potential we have

Taking into account eqs 22 and 17, one sees that the harmonic
coefficients in eq 23 and eq 24 are identical.
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