**ABSTRACT:** An electron traveling through liquid helium with sufficient kinetic energy (eKE) is capable of creating a low-lying electronic excitation via inelastic scattering. When this happens, the excitation is usually localized on an atom or incipient diatom at the moment of its creation. The term “incipient diatom” refers to two atoms that are capable of entering into a stable chemical bond, but whose internuclear separation is so large that the bond is tenuous, e.g. as near the peak of an entrance barrier. An incipient diatom is easily influenced through interactions with its environment. In most cases, stable and metastable electronic excitations in liquid helium have well-understood gas-phase counterparts. Table 1 lists gas-phase species whose energies lie in the range relevant to the present paper.

The elastic scattering of an electron in liquid helium lowers its momentum relative to the lab. If inelastic scattering does not intervene, this leads to an electron bubble. If inelastic scattering does intervene, bubble formation simply takes less time. Likewise, radiatively metastable triplet atoms and diatomic molecules also form bubbles.

Electronically excited diatoms are also produced and removed in the aftermath of inelastic scattering. These processes are often poorly understood. For example, one such case motivated the present paper and a previous one. The fates of the inelastically scattered electrons can be interesting. In large nanodroplets, He2 an electron with sufficient eKE can create two or more excited atoms inside the same droplet. We will leave such processes aside, and focus on the fates of liquid-helium counterparts of the lowest excited state of a gas-phase He atom: 1s2s 3S, referred to hereafter as He*. The liquid-helium counterparts are also referred to as He*, the distinction being clear from context.

1. INTRODUCTION

An electron traveling through liquid helium with sufficient kinetic energy (eKE) is capable of creating a low-lying electronic excitation via inelastic scattering. When this happens, the excitation is usually localized on an atom or incipient diatom at the moment of its creation. The term “incipient diatom” refers to two atoms that are capable of entering into a stable chemical bond, but whose internuclear separation is so large that the bond is tenuous, e.g. as near the peak of an entrance barrier. An incipient diatom is easily influenced through interactions with its environment. In most cases, stable and metastable electronic excitations in liquid helium have well-understood gas-phase counterparts. Table 1 lists gas-phase species whose energies lie in the range relevant to the present paper.

The elastic scattering of an electron in liquid helium lowers its momentum relative to the lab. If inelastic scattering does not intervene, this leads to an electron bubble. If inelastic scattering does intervene, bubble formation simply takes less time. Likewise, radiatively metastable triplet atoms and diatomic molecules also form bubbles.

Electronically excited diatoms are also produced and removed in the aftermath of inelastic scattering. These processes are often poorly understood. For example, one such case motivated the present paper and a previous one. The fates of the inelastically scattered electrons can be interesting. In large nanodroplets, He2 an electron with sufficient eKE can create two or more excited atoms inside the same droplet. We will leave such processes aside, and focus on the fates of liquid-helium counterparts of the lowest excited state of a gas-phase He atom: 1s2s 3S, referred to hereafter as He*. The liquid-helium counterparts are also referred to as He*, the distinction being clear from context.

### Table 1. Excited States of Isolated Atomic and Diatomic Helium

<table>
<thead>
<tr>
<th>species</th>
<th>label</th>
<th>energy/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>He(1s2s, 3S)</td>
<td>He*</td>
<td>19.82</td>
</tr>
<tr>
<td>He(1s2s, 5S)</td>
<td>He(2S)</td>
<td>20.62</td>
</tr>
<tr>
<td>He(1s2p, 3P)</td>
<td>He(2P)</td>
<td>20.96</td>
</tr>
<tr>
<td>He(1s2p, 1P)</td>
<td>He(2P)</td>
<td>21.22</td>
</tr>
<tr>
<td>He2(a3Σg)</td>
<td>He*</td>
<td>17.98</td>
</tr>
<tr>
<td>He2(b1Πu)</td>
<td>b1Πg</td>
<td>18.57</td>
</tr>
<tr>
<td>He2(c2Σg)</td>
<td>c2Σg</td>
<td>19.32</td>
</tr>
<tr>
<td>He2(A1Σg+)</td>
<td>A1Σg+</td>
<td>18.15</td>
</tr>
<tr>
<td>He2(B1Σg+)</td>
<td>B1Σg+</td>
<td>18.58</td>
</tr>
<tr>
<td>He2(C1Σg+)</td>
<td>B1Σg+</td>
<td>19.50</td>
</tr>
</tbody>
</table>

“Energies are relative to separated ground state atoms. Spin–orbit splitting is ignored. Atoms are from the National Institute of Standards and Technology. The He2(a3Σg) (He2*) energy is from D4 calculated by Pavanello et al., with zero point including anharmonicity from Focsá et al. The b1Πg and c2Σg energies, including zero point with anharmonicity, are from Focsá et al. The A-state energy is from Huber and Herzberg. The B and C-state energies, including zero point with anharmonicity, are from Focsá et al.”
A He* exciton created by inelastic scattering in liquid helium undergoes dynamical processes following its abrupt birth. Being a Rydberg state, the outermost orbital’s electron density extends significantly farther from its nucleus than does the electron density of the ground state atom. Thus, adjacent He atoms experience repulsion concomitantly with He* creation, in which case electron-impact excitation requires more energy than the 19.82 eV of gas-phase He*. The additional energy, \( \sim 0.2 \) eV,31 though modest compared to 19.82 eV, is important, as it causes significant repulsion near the excitation site. What ensues is He atoms being pushed away from the exciton. This leads eventually to a He* bubble whose radius is about 6 Å.14 Note that the bubble does not have a smooth periphery, as the average He–He distance of the liquid (3.5 Å, vide infra, Figure 5) is too large a percentage of the 6 Å radius. The bubble’s interior “surface” must play a role in determining the short 15 \( \mu s \) lifetime of He* in liquid helium.16,32

That is not the whole story, however. In addition to the creation of He*, subsequent dynamics yield the triplet diatomic moiety, \( \text{He}_2(a^3\Sigma_u^+) \).15 As mentioned above, the lifetime of He* in liquid helium is 15 \( \mu s \), so at long times \( \text{He}_2(a^3\Sigma_u^+) \) is the dominant metastable species. We will refer to both gas-phase and condensed-phase \( \text{He}_2(a^3\Sigma_u^+) \) as He2*, the distinction being clear from context.

How this species is created remained a puzzle for many years. The gas-phase process, \( \text{He}* \rightarrow \text{He}^{+}+\text{He} \), which is exoergic by \( \sim 2 \) eV, has a barrier that peaks near 2.7 Å with energy exceeding 500 cm\(^{-1}\). This barrier is formidable at low temperature, to say nothing of the protection afforded by the bubble that hosts He*. We concluded that a He2* moiety must be formed on a short timescale if He2* formation is to precede the 15 \( \mu s \) He* lifetime. A preliminary report presented a qualitative model of how this might happen.19

Our interest in the conversion of He* to He2* in liquid helium arose in the context of electron-bombarded large helium nanodroplets whose diameters exceed about 50 nm.23,27,30 It had been shown that a second He2* channel opens when eKE exceeds \( \approx 40 \) eV.23,28,29 The He2* ions produced via this channel are formed with high selectivity, and in an electronically excited, radiatively metastable state.23–25 The \( ^3\text{A}_2 \) state was deemed likely (Figure 1).23,24,28,29 Fine et al. reported delay times of \( \sim 10 \) \( \mu s \) for this channel and pointed out that bubbles harboring He* or He2* migrate to the surfaces of large droplets, where they roam about and react with one another.19

In the gas phase, such species react vigorously.19,30 The roles of He* and He2* in the production of He4* has not been established, except to confirm that the 40 eV threshold implicates two He* as the progenitors of radiatively metastable He4*.27 Early studies yielded high-quality data. Intriguing phenomena were discovered, and proposed mechanisms were presented, though not for He2* production. This work is summarized in ref 19.

Referring to Figure 1, an attractive scenario has two He2* molecules autoionizing when approaching one another.33,34 Namely, \( \text{He}_4^* \left( ^1\text{A}_2 \right) \) can be thought of as containing separated He2* ions whose axes are perpendicular to one another and to the line between the He2* centers-of-mass. These ions share the Rydberg electron. To create \( \text{He}_4^* \left( ^1\text{A}_2 \right) \), each He2* must have ample vibrational energy. This turns out to be the case, e.g., \( \text{He}_3^* \left( \nu = 10–12 \right) \) has been observed spectroscopically.37

As mentioned above, electron-impact excitation in liquid helium not only creates an exciton (He* or incipient He2*) but introduces repulsion between the exciton and nearby He atoms. This repulsion dominates the early time dynamics near the excitation site. However, it can achieve more than merely pushing He atoms away from He*. It applies inward force along the axis of a He*–He pair. When this pair has an internuclear separation near where the entrance barrier peaks (vide infra, Figure 6b), it is nudged toward the attractive He2* potential. That is the crux of the early time dynamics (Figure 2).

The present paper presents additional \textit{ab initio} molecular dynamics (AIMD) simulations. It expands on issues raised in ref 19 and introduces new ones.

![Figure 1](image1.jpg)

**Figure 1.** Structure of \( \text{He}_4^* \left( ^1\text{A}_2 \right) \) calculated by Knowles and Murrell.33,34 Each blue pair is \( \text{He}_2^* \). The Rydberg electron is shared between \( \text{He}_2^* \) ions. The bond is fairly strong (1.264 eV) despite the large separation between the \( \text{He}_2^* \) groups.

![Figure 2](image2.jpg)

**Figure 2.** Electron impact promotes He atoms to the lowest triplet. The exciton resides mainly on the left diatom. \( R_{13} \) shortens and \( R_{23} \) lengths at early times.

![Figure 3](image3.jpg)

**Figure 3.** Potential energy curve for two ground state He atoms. Reprinted with permission from ref 38. Copyright 2016 Elsevier. The solid line was calculated at a high level of theory.39 The dots and dashed line are not relevant here. The energy is in meV.
The van der Waals (vdW) minimum for two ground state He atoms lies at 2.98 Å with a depth of 8 cm$^{-1}$ (Figure 3), and the pair correlation function $g(r)$ (vide infra, Figure 5) describes interatomic spacing in 1.2 K superfluid, with the first (nearest neighbor) peak being at 3.5 Å. Electron-impact excitation samples spacing per $g(r)$. Whereas weak interatomic forces are responsible for the starting configurations at the instant of exciton creation, the dynamics that ensue are influenced by the repulsive forces that accompany the exciton’s entry.

In simulations with small helium clusters, the cluster can break apart. There will still be long-range interactions among fragments, but these will be small. In ref 19, we noted that excitons seem to hop over unusually large distances. Indeed, as explained by Li and Tang$^{40}$ and by Agronovich$^{41}$ such distances are far too large to make sense.$^{40,41}$ This artifact is due to the neglect of nonadiabatic transitions. It will be explained below.

We begin with Computational Details, describing the theoretical methods and computational protocols. The Results and Discussion section deals mainly with collinear three-atom systems, explaining the nature of the low-lying manifold adiabatic surfaces and how they participate in the molecular dynamics. A few results with collinear eight-atom systems illustrate energy flow, fragmentation of the original cluster, and a limitation of Born–Oppenheimer dynamics. The central role of nonadiabatic transitions is identified. The Conclusions section is a concise summary.

2. COMPUTATIONAL DETAILS

Calculations were carried out using the Q-Chem electronic structure package.$^{42,43}$ Trajectories and orbitals were visualized using IQmol$^{44}$ and natural transition orbitals (NTOs) were plotted using Jmol.$^{45}$ Diatomic potential energy curves ($a^3\Sigma_u^+$, $c^3\Sigma_g^+$, and $b^3\Pi_g$) and collinear potential energy surfaces (PESs) were computed using the equation-of-motion for excitation energies coupled-cluster approach with single and double excitations (EOM-EE-CCSD)$^{46,47}$ and the doubly augmented Dunning’s double-$\zeta$ basis set, d-aug-cc-pVDZ. PESs were constructed from excited state energies, with spacing between adjacent atoms incremented by 0.02 Å. Our calculations of diatomic potential energy curves using d-aug-cc-pVDZ and d-aug-cc-pVTZ have shown that differences between results obtained using these bases are not essential. These validation calculations have also confirmed that EOM-EE-CCSD with the d-aug-cc-pVDZ basis gives a good estimate of the excitation energy and barrier height, consistent with earlier results.$^{14,48}$

We analyzed the character of excited states by computing NTOs of EOM-EE-CCSD wave functions. We also computed NTOs during trajectories to study exciton dynamics. NTOs provide the most compact way to visualize electronic excitations in terms of hole-particle pairs. Representing the electronic transitions in terms of NTOs removes the arbitrariness associated with the choice of molecular orbitals and provides the essential description of the transition. Electron and hole orbitals, $\psi_e(r_e)$ and $\psi_h(r_h)$, are obtained by singular value decomposition (SVD) of the one-particle transition density matrix. Each pair of hole and particle states is associated with a
singular value $\sigma_k$, whose square gives the weight of each hole-particle pair in the overall exciton wave function:

$$\chi_{exc}(r_h, r_e) = \sum_k \sigma_k \psi_k^*(r_h) \psi_k^*(r_e)$$  

(1)

where summation runs by all NTO pairs. Usually, a small number of NTO pairs dominate, so excitations can be represented using just one or two electron-hole pairs, facilitating interpretation of excited electronic states. NTO analysis also yields electronic character: valence vs Rydberg; charge-transfer; $n^*n$, $n\pi^*$, etc.

We performed AIMD in systems of collinear atoms, with trajectories launched on the lowest triplet state. Excited state energies and gradients were computed at each time-step using EOM-EE-CCSD with the d-aug-cc-pVDZ basis set. Trajectories were propagated for 500 steps (484 fs) with a time-step of 40 atomic units (0.968 fs) using the velocity Verlet algorithm.

Simulations were run at constant energy starting from different configurations, each with zero initial kinetic energy.

3. RESULTS AND DISCUSSION

3.1. General Considerations. Detailed studies of collinear three-atom systems (Figure 4) enable insight into early time triplet exciton dynamics in liquid helium. They also reveal that nonadiabatic transitions among low-lying triplet PESs play a central role. A few results with collinear eight-atom systems provide further insight, notably, into nonadiabaticity in such systems.

Classical molecular dynamics cannot describe liquid helium. However, the repulsion that accompanies exciton creation imparts sufficient energy to justify enlistment of the classical domain. Note that a He atom with 100 cm$^{-1}$ of translational energy has a de Broglie wavelength of 1.2 Å. A classical description then becomes appropriate, albeit subject to careful interpretation.
Figure 5 shows that the helium radial distribution function \( g(r) \) rises sharply near 2.3 Å and peaks at 3.5 Å.\textsuperscript{55–57} It gives the distribution of interatomic distances accessible to electron-impact excitation.\textsuperscript{58} Our calculated \( a^3\Sigma_u^+ \) curve (Figure 6) has a barrier whose peak is at 2.72 Å with energy of 516 cm\(^{-1}\) relative to \( \text{He}\# + \text{He} \), in accord with high-level theory.\textsuperscript{14} We will refer to the analogous exciton in the barrier region as \((\text{He}−\text{He})^* \) or incipient \( \text{He}_2^* \), depending on context. Figure 5 shows that separations smaller than 2.7 Å, where the barrier in Figure 6b peaks, account for a small percentage of the nearest neighbors. Launching more trajectories than this toward \( \text{He}_2^* \) requires that exciton creation is accompanied by forces that increase the critical separation, \( R_{cr} \) for which the system commences evolution toward \( \text{He}_2^* \). Figure 5 enables an estimate of the probability that excitation takes place with at least one nearest neighbor within \( R_{cr} \). This probability is given by 
\[
1 - \exp\left[-4\pi\rho\int_0^\infty dr r^2g(r)\right],
\]
where \( \rho \) is the helium density. Using it, \( R_{cr} \) values of 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0 Å yield probabilities of 0.09, 0.15, 0.24, 0.34, 0.45, and 0.57, respectively.

### 3.2. Collinear Three-Atom Adiabats

Collinear three-atom systems enable the exciton to reside at either an atom or diatom, or to delocalize (to varying degrees) over the three atoms. This manifests in the two lowest energy adiabats, referred to hereafter as the lower and upper adiabats. For example, Figure 7a shows that the \( \text{He}_2^* \) diatomic potential curve in its barrier region is recovered in the large-\( R_{12} \) (equivalently, large \( R_{23} \)) limit through a combination of the lower and upper adiabats. Red arrows show where these two adiabats nearly touch. In this case, the exciton resides on the diatom.

Referring to Figure 7a, the lower and upper adiabats nearly touch along lines that run parallel to the axes. Figure 8 shows the near-degeneracy line that runs parallel to the \( R_{23} \) axis at \( R_{12} = 2.27 \) Å. An equivalent line runs parallel to the \( R_{12} \) axis (albeit off-scale in the figure), as the figure is symmetric about a line at 45° to the axes. The small gaps in Figure 7a (red arrows) are due to the grid spacing used to display the surfaces. They almost disappear with a grid whose spacing is not a limiting factor, i.e., dropping to 1.6 cm\(^{-1}\) at \( R_{23} = 6.00 \) Å and \( R_{12} = 2.27 \) Å (equivalently, at \( R_{12} = 6.00 \) Å and \( R_{23} = 2.27 \) Å).

Figure 9 shows slices through the PESs (see Supporting Information for 4.50 and 5.00 Å). Figure 9a (\( R_{23} = 6.00 \) Å) shows that the diatomic \( \text{He}_2^* \) curve follows the lower PES for \( R_{12} < 2.27 \) Å (black) and the upper PES for \( R_{12} > 2.27 \) Å (blue), with NTOs indicating exciton nature. Each NTO entry shows (top to bottom) the Rydberg orbital, the hole orbital, and the \( \sigma_2^2 \) value. When \( \sigma_2^2 \geq 0.90 \), just this NTO provides an adequate picture of the exciton. Otherwise, the two leading \( \sigma_2^2 \) values are given.

Orbital composition changes along the \( \text{He}_2^* \) curve. At \( R_{12} = 2.20 \) Å (black), bonding and antibonding contributions localized on the \( R_{12} \) diatom contribute \( \sigma_1^2 = 0.76 \) and \( \sigma_2^2 = 0.20 \), respectively, whereas at \( R_{12} = 2.50 \) Å (blue), their contributions are 0.71 and 0.25. With the exciton on atom 3 there is little change in orbital composition. This curve is the upper PES for \( R_{12} < 2.27 \) Å and the lower PES for \( R_{12} > 2.27 \) Å, with \( \sigma_2^2 \) values remaining at 0.96 throughout the range shown. The near degeneracy is centered at \( E = 0.136 \) eV.

In Figure 9b (\( R_{23} = 4.00 \) Å), an 11 cm\(^{-1}\) gap is centered at \( E = 0.149 \) eV. The NTOs support a picture in which the analog of the \( \text{He}_2^* \) curve is obtained by increasing \( R_{23} \) on the lower adiabat, transitioning from lower to upper adiabat at 2.27 Å, and transitioning from upper to lower adiabat at 4.00 Å. Imagine standing to the left of Figure 7b and examining the

\[ E_{\text{H}} = 0.149 \text{ eV}. \]

\[ E_{\text{TO}} = 0.168 \text{ eV}. \]

\[ E_{\text{R}} = 0.136 \text{ eV}. \]
lower adiabat along the line $R_{23} = 4.00 \text{ Å}$. The initial ridge is followed by a flat region that drops down after encountering a ridge at $R_{12} = 4.00 \text{ Å}$. This latter ridge runs along a line at $45^\circ$ with respect to the axes. This view along $R_{23} = 4.0 \text{ Å}$ describes the black curve in Figure 9b. Figure 9c is for $R_{23} = 3.50 \text{ Å}$. The energy at the center of the gap is 0.168 eV, the gap is $48 \text{ cm}^{-1}$, and $R_{12}$ at the center of the gap is 2.30 Å.

3.3. Trajectories. Trajectories were launched on the lowest triplet PES. The stationary-atoms ansatz is in reasonable accord with the kinetic energy of liquid helium and the relatively large amount of kinetic energy that follows exciton creation. At 2 K, each He atom has, on average, about 10 cm$^{-1}$ of kinetic energy, in which case each nuclear degree of freedom has about 3 cm$^{-1}$. The kinetic energy is due mainly to zero-point
fluctuations, so the 10 cm$^{-1}$ value changes little with temperature.

The trajectory calculations do not include nonadiabatic transitions. It is easy to see what is going on at large distances insofar as effects due to nonadiabatic transitions. Referring to Figure 9a, a trajectory propagating from small $R_{12}$ through the near-degeneracy point will pass from the lower to the upper adiabat with essentially 100% efficiency. Indeed, staying on either adiabat as $R_{12}$ goes from, e.g., 2.20 to 2.50 Å is not an option. This would require an exciton to hop a distance that is too large to be feasible, as discussed below. This behavior was confirmed by calculating nonadiabatic couplings among the three lowest PESs as $R_{12}$ traverses this region with $R_{23} = 6.00$ Å.

The role of nonadiabatic transitions is clear in extreme cases such as the large-$R_{12}$ case discussed above. However, their roles are not obvious a priori for many of the $R_{12}^0$ and $R_{23}^0$ values inside the box in Figure 8. Dynamos are expected to be complicated when kinetic energies are comparable to or larger than energy differences between PESs, which arises along many trajectories. In these cases, it is possible that more than two PESs participate. For the time being, we put such complexities aside until a thorough study of nonadiabatic processes has been carried out. This will be the focus of the next generation of our calculations.

Figure 10 shows representative trajectories, including NTOs, for sufficiently early times that nonadiabatic transitions do not enter the picture. A total of 40 trajectories commenced propagation on the lower adiabat for starting distances: $2.7 \leq R_{12}^0 \leq 3.0$ Å and $3.0 \leq R_{23}^0 \leq 3.9$ Å, in steps of 0.10 Å. The above values lie within or on the rectangle in Figure 8. The sampling of these trajectories presented in Figure 10 tells the story except at and near a symmetry point. Namely, the starting point ($R_{12}^0, R_{23}^0$) = (3.0, 3.0) cannot break its symmetry. Atom 2 remains motionless as atoms 1 and 3 leave symmetrically. Nearby starting points: ($R_{12}^0, R_{23}^0$) = (3.0, 3.0), (3.0, 3.1), (3.0, 3.2), (2.9, 3.0), and (2.9, 3.1), behave similarly. However, the remaining 35 trajectories all have $R_{12}$ decreasing and $R_{23}$ increasing at short times. The NTOs in Figure 10 are placed above and below panels a--c. Each NTO entry consists of the $\sigma^2$ value and its corresponding electron orbital above and the $\pi^2$ value and its corresponding electron orbital below. Hole orbitals are not shown. They are more compact, as illustrated in Figure 9, and are localized on the same atoms as the particle orbitals along the trajectories.

The excitons under consideration consist of a Rydberg electron and a hole, and concerted electron transfer must take place for the exciton to hop. In the three-atom cases, the Rydberg electron must hop from He$_2^*$ to atom 3 in concert with an electron on atom 3 moving to the He$_2^*$ hole (or a Rydberg electron on atom 3 must hop to a ground state He$_2$ pair in concert with an electron on the He$_2$ pair moving to the He$^*$ hole). To get an idea of how this varies with distance between sites, $d$, the squared overlap: $i\langle\psi_{16}(\vec{r}_2)\psi_{16}(\vec{r}_2 + \vec{d})\rangle^2$ vs $d$ is given in Figure 11. It is for He$^*$ + He $\rightarrow$ He + He$^*$, but He$_2^*$ + He $\rightarrow$ He$_2$ + He$^*$ behaves similarly. Section 3.4 and the Supporting Information give examples of how failure to include nonadiabatic transitions results in unphysical hops.

Referring to Figure 9a, consider staying on the lower adiabat versus making a nonadiabatic transition to the upper adiabat when a trajectory going from left to right reaches the near degeneracy. It makes a nonadiabatic transition, because to stay on an adiabat would require the exciton to hop over too large a distance. Perusal of trajectories in this way leads to an important conclusion: Restricting dynamics to one adiabat results in unphysical hops, whereas including nonadiabatic transitions...
eliminates them. The next section demonstrates this in collinear eight-atom clusters.

To conclude this section, note that the exciton must be on an atom when \( R_{12} \) and \( R_{23} \) are large. Alternatively, when \( R_{23} \) is large and \( R_{12} \) is not, we have the possibility of He\(_2^*\) and atom 3, as well as the possibility of the exciton on atom 3 and a He\(_2\) dimer. At large \( R_{23} \), the lower and upper adiabats act together to yield He\(_2^*\) perturbed by a distant He atom.

### 3.4. Eight Atoms

The game of pool is a playground for classical physics on a flat surface.\(^{60}\) Consider a collinear arrangement in which a cue ball strikes one end (Figure 12a) initiating a series of collisions. Leaving aside friction, after the collisions have ceased, the ball on the far right has the same velocity as did the incident cue ball (Figure 12b). The others are stationary. The analogous arrangement of He atoms in Figure 12c will be used to illustrate a few effects, most importantly, the role of nonadiabatic transitions. Arrangements of six, seven, and nine atoms yield similar conclusions.

Parts a and b of Figure 13 show stable excitons whose initial separations are \( R_{45}^0 \) = 1.10 and 2.10 Å, respectively, with other pair distances in the range 3.23—3.51 Å. The exciton oscillations are rapid compared to the motions they engender in the other atoms. This adiabatic separation of timescales persists over a wide range of He\(_2^*\) vibrational energy. Starting at \( t = 0 \), atoms 3 and 6 are repelled, causing them to move toward atoms 2 and 7, respectively. Atoms other than 3 and 6 are also repelled by the exciton, but much less. Roughly speaking, all atoms other than 4 and 5 interact with one another through potentials like the one in Figure 3 until they are overwhelmed by repulsion from the exciton. Energy propagates outward, liberating atoms 1 and 8. Note the high degree of left—right symmetry.

One gets a rough idea of the timescale for outward propagation of energy. Referring to Figure 13a, at 200 fs, atom 3 has moved 1.07 Å, the distance from the He\(_2^*\) center-of-mass (CM) to atom 3 has increased from 4.01 to 5.08 Å, and \( R_{23} \) has shortened from 3.23 to 2.37 Å. Figure 2 shows He—He repulsion rising steeply there, causing \( R_{23} \) to expand. The collinear arrangement exaggerates the effectiveness of energy transfer in the same way as does the pool-ball example. Trajectories end at 484 fs with fragmentation of the original cluster yielding He\(_2^*\), two dimers, and atoms 1 and 8. The system ceased behaving as an eight-atom adiabat at \( \sim 200 \) fs, because of minimal interaction between the exciton and atoms 3 and 6.

Figure 13b is for \( R_{45}^0 = 2.10 \) Å. Note that the potential energy of isolated He\(_2^*\) at 2.10 Å is 14 368 cm\(^{-1}\), which is 0.92 \( D_e \) and the oscillation period has increased from 19.4 fs for \( R_{45}^0 = 1.10 \) Å, to 51.5 fs, and oscillation is quite anharmonic. Nonetheless, time averaged repulsion, judged by motions of the other six atoms, is like that in Figure 13a. This is because of the rapid exciton oscillation relative to the motions of the other atoms. In liquid helium there will be an outward push from an exciton on a timescale that is much longer than that over which incipient He\(_2^*\) starts toward its potential energy minimum.

For \( R_{45}^0 = 2.30 \) (Figure 13c), an exciton hop appears when the distance between the \( R_{45} \) and \( R_{23} \) CMs is 7.06 Å. Even more egregious is that this happens in <1 fs. As discussed above,
such exciton hops arise due to using Born–Oppenheimer molecular dynamics. A more extreme example is in the Supporting Information.

4. CONCLUSIONS

We have examined adiabatic PESs, nuclear dynamics, and timescales relevant to He$_2^*$ formation. The timescale for ensuring creation of He$_2^*$ moieties is smaller than that of pushing He atoms away from an exciton. The crucial role of nonadiabatic transitions in such systems has been established. Specific points are listed below.

- The presence of He$_2^*$ following the creation of a triplet exciton in liquid helium had been puzzling, as gas-phase He$^*$ + He $\rightarrow$ He$_2^*$ has a barrier whose peak energy exceeds 500 cm$^{-1}$. This seemed insurmountable at a few Kelvin. However, He$_2^*$ can be produced in concert with exciton creation via a few-body effect.

- The radial distribution function of liquid helium peaks at 3.5 Å and is down to half its peak value at 2.7 Å. The gas-phase He$^*$ + He $\rightarrow$ He$_2^*$ barrier peaks at 2.7 Å. We estimate that $R_c^*$ values of 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0 Å have probabilities of 0.09, 0.15, 0.24, 0.34, 0.45, and 0.57, respectively. Thus, a nearest neighbor is subsumed efficiently into incipient He$_2^*$.

- The two lowest triplets were calculated for interatomic distances relevant to electron-impact excitation. The lower and upper adiabats act together to recover the diatomic $\Sigma_u^+$ curve, underscoring the importance of nonadiabatic dynamics in such systems.

- Early time dynamics in collinear three-atom systems has been examined using classical trajectories launched on the lower PES, which is calculated on the fly. The trajectories were launched from 2.7 ≤ $R_{12}^*$ ≤ 3.0 Å and 3.0 ≤ $R_{3}^*$ ≤ 3.9 Å, in steps of 0.1 Å. Timing is critical: repelling nearby helium vs incipient He$_2^*$ evolving toward the He$_2^*$ potential energy minimum.

- Systems comprising eight collinear atoms illustrate fragmentation of the initial cluster and unphysical exciton hops that further underscore the essential role of nonadiabatic transitions.

## ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.9b03241.

Figures showing additional views of the two lowest energy triplet adiabats of collinear three-atom He system, slices through the adiabats as well as NTOs, and the trajectory of a collinear eight-atom system (PDF)

## AUTHOR INFORMATION

### Corresponding Author

*E-mail: wittig@usc.edu. Phone: (213) 740-7368.

ORCID

Anna I. Krylov: 0000-0001-6788-5016
Oleg V. Prezhdo: 0000-0002-5140-7500
Andrey F. Vilesov: 0000-0002-8412-817X
Curt Wittig: 0000-0002-8426-8869

### Present Address

ZestFinance, 1377 N. Serrano Ave., Los Angeles, CA 90027.

### Notes

The authors declare no competing financial interest.

### ACKNOWLEDGMENTS

This work was supported by National Science Foundation grants CHE-1900510 (P.N. and O.V.P.), Army Research Office grant W911NF-16-1-0232 (ALK), a 2019 Simons Fellowship in Theoretical Physics (ALK), CHE-1362535 (A.F.V.), CHE-1664990 (A.F.V.), and AST-1800591 (C.W.).

## REFERENCES

(1) Sansonetti, J. E.; Martin, W. C.; Young, S. L. Handbook of Basic Atomic Spectroscopic Data; National Institute of Science and Technology (NIST), 2005.


