Interplay between Locally Excited and Charge Transfer States Governs the Photoswitching Mechanism in the Fluorescent Protein Dreiklang

Published as part of The Journal of Physical Chemistry virtual special issue "Emily A. Carter Festschrift".

Tirthendu Sen, Yingying Ma, Igor V. Polyakov, Bella L. Grigorenko, Alexander V. Nemukhin, and Anna I. Krylov*

Cite This: J. Phys. Chem. B 2021, 125, 757−770

ABSTRACT: We present the results of high-level electronic structure and dynamics simulations of the photoactive protein Dreiklang. With the goal of understanding the details of the Dreiklang photocycle, we carefully characterize the excited states of the ON- and OFF-forms of Dreiklang. The key finding of our study is the existence of a low-lying excited state of a charge-transfer character in the neutral ON form and that population of this state, which is nearly isoenergetic with the locally excited bright state, initiates a series of steps that ultimately lead to the formation of the hydrated dark chromophore (OFF state). These results allow us to refine the mechanistic picture of Dreiklang’s photocycle and photoactivation.

I. INTRODUCTION

Many fluorescent proteins (FPs) undergo reversible photo-switching upon photoexcitation, which is instrumental in several imaging modalities, including super-resolution techniques. The most common mechanism is cis−trans photo-isomerization of the chromophore, sometimes coupled with changes in its protonation state; notable examples include Dronpa, Padron, and KFP. However, an entirely different mechanism is operating in Dreiklang, where the switching is based on reversible photoinduced hydration/dehydration of the imidazolinone ring of the chromophore (Figure 1).

Dreiklang was derived by random mutagenesis from Citrine, a close relative of EYFP. It has the same chromophore, formed by the glycine–tyrosine–glycine (GYG) tripeptidy π-stacked with a nearby tyrosine residue (Tyr203). The chromophore’s conjugated core is the same as in EGFP, but due to the T65G mutation the connection to the peptide backbone via imidazolinone’s carbon is slightly different.

Figure 2 shows absorption spectra of the ON- and OFF-forms of Dreiklang. The absorption spectrum of the ON-form features two bands: one at ~3.01 eV (411−413 nm) and a twice-more intense one at 2.43 eV (511 nm), with a shoulder at 2.58 eV (480 nm). These bands are assigned to the neutral and anionic forms of the chromophore, traditionally called form A and form B. In many other GFP-like proteins, excitation of either band leads to the identical fluorescence spectra with the maximum around 2.3 eV (green or yellow), ascribed to form B. This is explained by ultrafast (picoseconds or shorter) excited-state proton-transfer (ESPT) from the chromophore to a proton acceptor via a proton wire. In wt-GFP, ESPT proceeds as a sequential proton transfer from the excited neutral chromophore to the Glu222 carboxylate...
through a water molecule and the hydroxyl group of Ser205. This pathway can be disrupted by mutations. In Dreiklang, excitation of peak B leads to fluorescence at 2.34 eV (529 nm), with a quantum yield of 0.41. However, in contrast to many other FPs, the excitation of peak A leads to very weak (albeit non-negligible) fluorescence. This weak steady-state fluorescence is identical to the fluorescence produced by excitation of peak B. These observations suggest that ESPT in Dreiklang is strongly suppressed and happens with a very small quantum yield. Reduced effectiveness of ESPT is consistent with the observation that the essential difference between the parent system (Citrine) and Dreiklang is the upshift of the pK_a of the ON-state of the chromophore (7.2 versus 5.7).

The distinguishing feature of Dreiklang is that irradiation of peak A results in photoconversion to the dark form (OFF-state). Thus, in imaging applications, the ON-state and at 3.65 eV in the OFF-state.

The X-ray structures of the ON- and OFF-states (PDB IDs: 3ST2/3ST4 and 3ST3, respectively) show that the ON-state is indeed similar to EGFP/EYFP, whereas the OFF-state has a hydrated chromophore, similar to an intermediate form of the ON-state (equilibrium structure, PDB ID 3EMA). The hydrogen-bond network around Dreiklang’s chromophore with that in EGFP (PDB ID 1EMA) is disrupted by mutations. Espagne and co-workers investigated the mechanism using transient absorption and concluded that formation of photoproducts occurs on a nanosecond time scale or slower. They reported spectroscopic evidence of the formation of excited-state (on a picosecond time scale) and ground-state (picosecond to nanosecond time scale) intermediates and proposed a tentative mechanism; however, the proposed structures of the intermediates have not been validated by theoretical modeling of their spectral properties. On the theoretical side, we investigated thermal (ground-state) recovery of the ON-state. The calculations predicted a reaction barrier of about 27 kcal/mol on the ground-state potential energy surface and identified Glu222 as the key residue involved in the reaction, while the scan of the excited-state surface suggested a barrierless OFF → ON photoreaction. This work also presented a cursory analysis of the structures of the ON- and OFF-states, including tentative assignment of the protonation states of the key residues around the chromophore, and computed their spectral properties.

Given the importance of proton wires in the photocycle of FPs, here we revisit the question of protonation states using more advanced computational protocols and assess the effect of different protonation states on the excited states of the chromophore. Dreiklang operates in a wide range of pH (6–9). Figure 3 shows superimposed crystal structures of the ON-state (equilibrium structure, PDB ID 3ST2) and OFF-state (PDB ID 3ST3), indicating the hydrogen-bond network around the chromophore. It also compares the network around the Dreiklang chromophore with that in EGFP (PDB ID 1EMA). Dreiklang’s structure clearly shows participation of His145, Glu222, and Ser205, as well as several water molecules. In contrast, in EGFP the chromophore forms hydrogen bonds with His148 (position 145 is occupied by Tyr145 in EGFP), Thr203, and Glu222.

The two critical residues near the chromophore binding site in Dreiklang are Glu222 and His145. A tentative mechanism proposed in ref 10 assumed that both Glu222 and His145 are in the neutral form, at least, in the ON-state. In our study of the thermal recovery reaction, we considered Glu222 to be deprotonated and pointed out that the change in its protonation state along the reaction profile plays an essential role. Given the significant differences in the hydrogen-bond network in Dreiklang relative to EGFP, protonation states of the key residues should be carefully re-evaluated. We use the structure as the primary gauge and compare the distances between the selected residues and the chromophore. In some cases (e.g., for structures that have exactly the same atoms in the quantum part), we also consider total energies of the optimized structures.

After obtaining model structures for different forms of the chromophore and for different protonation states of His145 and Glu222, we compute excitation energies and analyze the effect of the protein environment. The key finding is that in the
neutral form of the chromophore there is a low-lying state of charge-transfer (CT) character (Tyr203 → Chro), corresponding to electron transfer from Tyr203 to the chromophore. This state is only present in the neutral form and is located within 0.25 eV of the bright locally excited (LE) state of the ππ* character. We further investigate implications of the CT state by dynamical simulations and geometry optimizations. Our results indicate that the population of the CT state plays the key role in Dreiklang’s photoswitching. On the basis of our calculations, we propose a refined picture of the photoconversion mechanism, summarized in Figure 4. As discussed below, this mechanism is consistent with all available experimental findings.

The structure of the paper is as follows. We begin by describing computational protocols. We then discuss the results of the simulations using different protocols. We first consider different protonation states and the excited states of the chromophore. We then discuss excited-state dynamics of the chromophore and the role of the CT state in the photoconversion. We conclude by discussing the implications of the revised photocycle.

II. COMPUTATIONAL METHODS AND PROTOCOLS

We begin with the crystal structure of the recovered ON-state (3ST4), which is nearly exactly superimposable on the equilibrium ON-structure (3ST2). The structure includes two water molecules: W354 near the phenolate end and W242 near the imidazolinone moiety. We note that in the previous study we used 3ST2 as the starting point for the ON-state, and the model structure also included an additional water molecule, which is present in 3ST3 structure (OFF-state) but not seen in 3ST2 and 3ST4.

We consider the following protonation states: Chromophore is anionic or neutral in the ON-state and is neutral in the OFF-state. Depending on the local environment, His145 can have three different protonation states: HSD (protonated at Nα), HSE (protonated at Nε), and HSP (protonated on both Nα, positively charged). Glu222 can be GLU (anionic) or GLUP (protonated). Figures S1 and S2 in the Supporting Information summarize the names and definitions of different protonation states. Propka suggested a neutral state (HSD or HSE) for His145 (pKα 2.2) and GLUP state (pKα 9.2) for the Glu222.

We built the model structures as follows. Starting from the PDB structure, hydrogen atoms were added using the VMD plugin and a modified (to include the chromophore) CHARMM27 topology file. Protonation states were initially assigned by Propka and then manually set for the chromophore, His145, and Glu222. Charged amino acids on the surface were locally neutralized by adding counterions close (~4.5 Å) to them. Charged residues that do not form salt bridges inside the protein barrel were also neutralized by adding appropriate counterions at the surface. For HSD-GLUP structures, this protocol resulted in the addition of 19 Na+ and 12 Cl− in the neutral forms (ON- and OFF-states), and 19 Na+ and 11 Cl− in the anionic forms. For other protonation states the number of counterions was adjusted accordingly. The proteins were solvated in water boxes producing a solvation layer of 15 Å. The TIP3P water model was used to describe water. Molecular dynamics (MD) simulations were performed using these solvated neutralized model structures as follows:

1. minimization using steepest descent algorithm for 2000 steps (protein, crystal water, counterions)
2. minimization using steepest descent algorithm for 2000 steps of the fully solvated structure (keeping protein frozen), with the subsequent equilibration of the solvent (keeping the protein frozen) for 500 ps with 1 fs time step using the NPT (isobaric–isothermal) ensemble
3. full equilibration of the system for 2 ns (with 1 fs time step) with periodic boundary condition (PBC) using the NPT ensemble (Noose-Hoover barostat with Langevin dynamics)
4. production run for 2 ns with 1 fs time step using the NPT ensemble; pressure and temperature were kept at 1 atm and 298 K.

The structures from production-run MD simulations were used to compute average structural parameters. We also used 21 snapshots from MD simulations to compute QM/MM (quantum mechanics/molecular mechanics) excitation energies; in these calculations, the geometry of the QM part was not optimized.

To obtain better structures for more accurate estimate of the excitation energies, we carried out QM/MM optimizations using a mechanical embedding scheme (ONIOM), starting from the final structures from Step 1. To reduce the system size, in these calculations we removed the counterions and pruned the solvation shell, only retaining waters within 4 Å from the surface of the protein. In these calculations, the size of the system was ~5900 atoms and the charge was −7 (for the neutral ON form in HSE-GLUP state).

In the MD and QM/MM simulations we used CHARMM27 parameters for standard protein residues and the parameters derived by Reuter et al. for the anionic GFP chromophore. The parameters for the hydrated form of the chromophore were derived from additional quantum mechanical calculations (optimized structures and natural bond orbital (NBO) charges), as described in the Supporting Information. QM/MM optimizations were carried out using ONIOM. The definitions of the QM part used in ONIOM are shown in Figure 5 (large QM). All coordinates were allowed to relax, except for the positions of link atoms (Cα carbons of the amino-acid residues shown in Figure 5), which were pinned to the positions from the MM-relaxed structures.

The QM part was described by oB97X-D/aug-cc-pVDZ in the QM/MM optimizations and in the AIMD (ab initio MD)

Figure 4. Revised Dreiklang’s photocycle. Excitation of form A can lead to ESPT and fluorescence, but this channel is suppressed in Dreiklang. Alternatively, the locally excited chromophore can undergo a nonadiabatic transition to the CT state, which is then stabilized by proton transfer. After releasing the electron back to Tyr203, intermediate X undergoes nucleophilic attack by nearby water, forming the hydrated chromophore.

7 (for the ωB97X-D/aug-cc-pVTZ calculations)
This functional belongs to the family of long-range corrected functionals in which the notorious self-interaction error is greatly reduced; it also includes dispersion correction. The benchmarks illustrated excellent performance of ωB97X-D for structures and energy differences of a broad range of compounds. Using long-range corrected functionals is particularly important for charged systems and for describing CT states.

Excitation energies were computed using a finite cluster approach with a slightly larger QM system (extended QM, see Figure 5), which also included Ile64 and Leu68 directly connected to the chromophore. Excitation energies were computed using several electronic structure methods: TD-DFT with ωB97X-D, SOS-CIS(D), EOM-CCSD, and XMCQDPT2. In these calculations we used the following basis sets: cc-pVDZ, aug-cc-pVDZ on all atoms, and a mixed basis set, aug-cc-pVDZ on the heavy atoms of the chromophore and Tyr203 and cc-pVDZ on the rest of the atoms. The charge of the large QM and extended QM is zero for the A-form (neutral chromophore) and −1 for the B-form (anionic chromophore). For large QM and extended QM, the total charge of the QM is +1 for the on-A (HSD-GLUP, HSE-GLUP, HSP-GLU), 0 for the on-A (HSD-GLU, HSE-GLU), 0 for the on-B (HSD-GLUP, HSE-GLUP, HSP-GLU), −1 for the on-B (HSD-GLU, HSE-GLU), +1 for the off-A (HSD-GLUP, HSE-GLUP, HSP-GLU), and 0 for the off-B (HSD-GLU, HSE-GLU). See Figure S2 for the definition of the protonation states. For the on-A (HSE-GLUP) structure, the large QM and the extended QM comprised 113 and 118 atoms, respectively.

In addition, we computed excitation energies using electrostatic embedding, as in our previous studies. To prevent the overpolarization of the QM part, the charges on the boundary atoms were redistributed as follows: bonds before −CONH were cut and capped with hydrogen atoms and the charge on CONH was set to zero; the excess charge was then redistributed over other atoms of the residue to maintain the total charge of the amino acid. These calculations were performed using 21 snapshots from the MD trajectories (step 4 above) and the large QM system with the aug-cc-pVDZ basis set.

Figure 5 shows the QM parts used in the ONIOM optimizations (large QM) and in the calculations of excitation energies (large QM and extended QM). We also carried out calculations with minimal QM (chromophore), and with the medium QM (chromophore and Tyr203).

Excited-state AIMD simulations were performed using the same protocol as the geometry optimization (ONIOM embedding, large QM, ωB97X-D/aug-cc-pVDZ, CHARMM27 force-field), with constant energy (NVE) ensemble and using initial velocities corresponding to 298 K thermal distribution with 1 fs time step for 10 ps (10 000 steps).

All electronic structure calculations were carried out with Q-Chem, except for XMCQDPT2 calculations, which were carried out with Firefly. MD simulations were performed with NAMD. The excited-state analysis was carried out using the libwfa library. In the Supporting Information, we also...
present the results for the structures from ref 20, which were obtained with a different QM/MM protocol.

III. RESULTS AND DISCUSSION

A. Protonation States. It is instructive to begin by revisiting the hydrogen-bonding network around the EGFP chromophore. As clearly seen in Figure 3, the EGFP network comprises Glu222, Ser205, Thr203, and His148. In the EGFP, position 145 is occupied by tyrosine (not shown in the figure), which does not form a hydrogen bond with the chromophore. The protonation states of the key residues in EGFP (in the anionic form) are well established: Glu222 is protonated (neutral) and His148 is neutral (HSD form, protonated at N\textsubscript{δ}).12,37,38 In the neutral form, Glu222 is deprotonated12 and the protonation state of His148 is the same as in the anionic form. We note that alternative protonation states are thermodynamically accessible and can be populated, especially at different pH. A recent study reported a subatomic resolution X-ray structure of GFP in the neutral (T203I mutant) and anionic (S65T and E222Q mutants) forms.44 For the neutral form, hydrogen atom densities show that the chromophore is in the neutral form, His148 is in HSD form, and Glu222 is in anionic form, which is consistent with our choices of protonation states in neutral GFP. For the anionic form, the maps confirm that Glu222 is in the neutral form (in agreement with the proton wire picture), but His148 is positively charged (HSP)—this suggests that in the ground state there is an additional proton involved in protonation equilibrium.

In Dreiklang, Thr203 is replaced by tyrosine, which participates in π-stacking instead of hydrogen bonding. This difference has a major effect on the distance between Glu222 and Ser205: compare 4.18 Å in Dreiklang and 3.72 Å in EGFP. Another important difference is that in Dreiklang position 145 is occupied by histidine, which coordinates the water molecule that forms a hydrogen bond with the phenolic oxygen atom of the chromophore. In EGFP, position 145 is occupied by tyrosine (which is not involved in the hydrogen-bonding network around the chromophore) and His148 is much closer to the chromophore than in Dreiklang, forming a hydrogen bond. Furthermore, T65G substitution, which, as was shown recently,38 significantly weakens the hydrogen-bonding network around the chromophore, increasing its flexibility in the excited state.

Figures 6 and 7 show the definition of the key distances used to validate the structures of the ON- and OFF-states. Tables S7–S12 in the SI contain the average values computed along the MD trajectories, the values at the QM/MM optimized structures, and compare them with the respective values from the crystal structures. These values are presented graphically in Figures 8 and 9. Figure S6 in the SI shows relative energies of the optimized structures for the model systems for which the
QM parts contain the same set of atoms, such that the total energies are comparable.

We note that the comparison with crystal structure is complicated by the equilibrium between the anionic and neutral chromophores. The averaged distances from the MD simulations generally agree well with the values from QM/MM optimization, which provides validation of the force-field parameters; the largest differences are observed for d7 and d11 (water position). For the ON-state with the neutral chromophore, we observe the best agreement (as judged from the smallest standard deviations of the QM/MM optimized structures from the X-ray structure) for the HSE-GLUP state (this is in agreement with ref 20). The largest variations between different protonation states are observed for d2 (Glu222-imidozalinone) and d14 (Ser205-Glu222). For the latter, the crystal structure value is 4.18 Å and the HSE-GLUP value is 4.72 Å, whereas other protonation states yield shorter distances—e.g., in the structures with GLU d14 ≈ 2.5 Å. In ref 20, d18 = 4.87 Å for HSE-GLUP (neutral ON-state), which is close to the present value. Further comparison between the present model structures and those from ref 20 is given in the Supporting Information (Tables S7 and S8 and Figure S4).

In terms of the total electronic energies, HSE-GLUP is 0.33 eV below HSD-GLUP, which is 0.42 eV lower than HSP-GLU; these energetics are consistent with the HSE-GLUP state being the most favorable for the ON-state with the neutral chromophore. The gap between HSD-GLU and HSE-GLUP is 1.05 eV.

Figure 8. Key distances for ON-states: Comparison between crystal structure, average MD values, and QM/MM optimization. See Figure 6 for definitions.
For the anionic chromophore, we observe the best agreement for HSD-GLUP. Here again d2 and d14 show the largest variations between different protonation states. The HSE-GLUP state is also a viable candidate. In contrast, in ref 20 HSP-GLUP was used to describe the anionic ON-state. In terms of the structures, the largest difference between HSD-GLUP and HSP-GLUP is in d14: compare 4.18 Å (X-ray) with 4.59 Å (HSD-GLUP) and 5.79 Å (HSP-GLUP). For HSE-GLUP, the largest differences are observed for d11 (Wat-Asp146) and for Chro-Tyr203: compare 5.14 Å (in HSE-GLUP) versus 2.59 (HSD-GLUP). Here again, MD simulations and QM/MM optimizations are in qualitative agreement.

In terms of the total electronic energies, HSD-GLUP is only 0.35 eV below HSE-GLUP. HSD-GLU and HSE-GLU are nearly isoenergetic (the latter is 0.1 eV lower). Hence, on the basis of structures and energetics, HSD-GLUP appears to be the best match, but other states cannot be ruled out.

Figure 9 shows the key distances for the OFF-state. Here the differences between the MD values and QM/MM optimizations are much larger (some values are off the chart), highlighting the advantage of using rigorous QM potentials. For the OFF-state, we observe the best agreement in terms of structures for the HSE-GLUP2, HSD-GLU, and HSP-GLU, but the differences are not that large. Comparisons of the total energies favor HSD-GLUP-OE2 (among HSD-GLUP-OE2, HSP-GLU, HSE-GLUP-OE2, HSE-GLUP, and HSD-GLUP series) and HSD-GLU (relative to HSE-GLU); HSP-GLU is slightly more stable compared to HSE-GLUP-OE2 (0.09 eV). In ref 20, HSE-GLUP and HSP-GLU were chosen as the best candidates.

Thus, we conclude that HSE-GLUP is the most likely protonation state in the neutral ON-state. For the anionic form and for the OFF-state, several choices appear to be possible. In the next section, we discuss the effect of the different protonation states on the excited states of the chromophore.

B. Excited-State Analysis. We begin by analyzing excited states of the isolated chromophores computed at their equilibrium geometries (see the Supporting Information).

Table 1. Excitation Energies (eV) of the Isolated Chromophores (ON- and OFF-States, A and B Forms) Computed at the Optimized Geometries (ωB97X-D/aug-cc-pVDZ). Oscillator Strengths Are Shown in Parentheses

<table>
<thead>
<tr>
<th>System</th>
<th>TD-DFT</th>
<th>SOS-CIS(D)</th>
<th>EOM-CCSD</th>
<th>XMCQDPT2</th>
<th>XMCQDPT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>on-A</td>
<td>3.75 (0.72)</td>
<td>3.88 (1.04)</td>
<td>3.69 (0.98)</td>
<td>3.54 (0.50)</td>
<td>3.26 (0.49)</td>
</tr>
<tr>
<td>on-B</td>
<td>3.10 (1.00)</td>
<td>2.75 (1.07)</td>
<td>2.95 (1.14)</td>
<td>2.58 (1.11)</td>
<td>2.40 (1.02)</td>
</tr>
<tr>
<td>off-A</td>
<td>4.29 (0.60)</td>
<td>4.62 (0.71)</td>
<td>4.01 (0.88)</td>
<td>4.47 (0.68)</td>
<td>4.04 (0.42)</td>
</tr>
<tr>
<td>off-B</td>
<td>3.39 (0.91)</td>
<td>3.07 (1.07)</td>
<td>3.23 (1.11)</td>
<td>3.02 (0.90)</td>
<td>2.82 (0.78)</td>
</tr>
</tbody>
</table>

"The lowest excited state is the bright state in all cases except when marked otherwise. ^aug-cc-pVDZ on heavy atoms and cc-pVDZ on hydrogens. ^The lowest bright state corresponds to the S0-S2 transition.

For the anionic chromophore, we observe the best agreement for HSD-GLUP. Here again d2 and d14 show the largest variations between different protonation states. The HSE-GLUP state is also a viable candidate. In contrast, in ref 20 HSP-GLUP was used to describe the anionic ON-state. In terms of the structures, the largest difference between HSD-GLUP and HSP-GLUP is in d14: compare 4.18 Å (X-ray) with 4.59 Å (HSD-GLUP) and 5.79 Å (HSP-GLUP). For HSE-GLUP, the largest differences are observed for d11 (Wat-Asp146) and for Chro-Tyr203: compare 5.14 Å (in HSE-GLUP) versus 2.59 (HSD-GLUP). Here again, MD simulations and QM/MM optimizations are in qualitative agreement.

In terms of the total electronic energies, HSD-GLUP is only 0.35 eV below HSE-GLUP. HSD-GLU and HSE-GLU are nearly isoenergetic (the latter is 0.1 eV lower). Hence, on the basis of structures and energetics, HSD-GLUP appears to be the best match, but other states cannot be ruled out.

Figure 9 shows the key distances for the OFF-state. Here the differences between the MD values and QM/MM optimizations are much larger (some values are off the chart), highlighting the advantage of using rigorous QM potentials. For the OFF-state, we observe the best agreement in terms of structures for the HSE-GLUP2, HSD-GLU, and HSP-GLU, but the differences are not that large. Comparisons of the total energies favor HSD-GLUP-OE2 (among HSD-GLUP-OE2, HSP-GLU, HSE-GLUP-OE2, HSE-GLUP, and HSD-GLUP series) and HSD-GLU (relative to HSE-GLU); HSP-GLU is slightly more stable compared to HSE-GLUP-OE2 (0.09 eV). In ref 20, HSE-GLUP and HSP-GLU were chosen as the best candidates.

Thus, we conclude that HSE-GLUP is the most likely protonation state in the neutral ON-state. For the anionic form and for the OFF-state, several choices appear to be possible. In the next section, we discuss the effect of the different protonation states on the excited states of the chromophore.

B. Excited-State Analysis. We begin by analyzing excited states of the isolated chromophores computed at their equilibrium geometries (see the Supporting Information). Table 1 shows computed excitation energies and oscillator strengths of the isolated chromophores in ON- and OFF-states, and Figure 10 shows the respective natural transition...
orbitals (NTOs).33,45 The excited state of a GFP-like chromophore corresponds to the $\pi \rightarrow \pi^*$ transition, with the main action happening on the methyne bridge.36 Consistently with previous studies,7,44 we observe that lower-level methods (TD-DFT) overestimate the excitation energies. EOM-CCSD energies are $0.06-0.28$ eV below the TD-DFT ones. XMCQDPT2 energies are below the EOM-CCSD energies by $0.4-0.5$ eV for on-A and on-B, but are nearly the same for off-A. We note a generally good agreement between SOS-CIS(D) and XMCQDPT2 for all four cases: the differences are less than 0.4 eV and XMCQDPT2 values are below SOS-CIS(D). Importantly, all methods capture (qualitatively) the large red shift (~ 0.6 eV) between the neutral and anionic chromophores (we note that SOS-CIS(D) overestimates the shift by almost a factor of 2). The shift can be explained in the framework of the Hückel model46 and is due to the increased delocalization on the methyne bridge in the anionic form. The oscillator strength for the anionic form is higher than that for the neutral, but the values depend on the method, that is, the ratio is 1.2 for EOM-CCSD, 1.4 for TD-DFT, and 2.2 for XMCQDPT2.

As expected, the excitation energies in the hydrated chromophore (OFF-state) are blue-shifted relative to the ON-state by roughly 0.6 eV due to disrupted conjugation. Here again all methods are in qualitative agreement, although SOS-CIS(D) yields much higher values than TD-DFT, EOM-CCSD, and XMCQDPT2.

As the next step, we consider the effect of the environment on excitation energies. The protein environment is important for quantitative comparison of the theoretical values with experiments.2,15 Here we primarily rely on a finite cluster approach and compute excitation energies using the extended QM system (Figure 5). To assess the effect of the protein beyond the extended QM, we also include the results of the QM/MM calculations using electrostatic embedding computed for 21 snapshots taken from the MD simulations.

The protein environment affects excitation energies through the electrostatic interactions that are sensitive to different charge distributions in the ground and excited states. In addition, the protein environment may change the characters of the excited states and even lead to the emergence of new types of states. Orbital analysis43,49,50 of the transitions provides a clear picture of such qualitative changes. Figure 11 shows NTOs for the two lowest excited states of the protein-bond chromophore (on-A form, HSE-GLUP protonation state). QM/MM/ωB97X-D/aug-cc-pVDZ.

In the on-B form, the lowest excited state has the same $\pi\pi^*$ character as in the bare chromophore. In QM-only calculations (extended QM), the second excited state is of CT character (located $0.3-0.8$ eV above the $\pi\pi^*$ state), but this state disappears when the rest of the protein is included.

The protonation states of His145 and Glu222 affect the excitation energies, but not the characters of the states. Importantly, the low-lying CT state appears in all protonation forms of on-A.

Table S16 shows TD-DFT excitation energies computed for large QM and extended QM with different basis sets for the on-A form. As one can see by comparing the extended QM with the bare chromophore, the protein environment leads to a red shift of the excitation energy of the LE state by $0.2-0.4$ eV. We observe the lowest excitation energy in HSE-GLUP (the most likely protonation state) and the highest in HSP-GLU. The differences between large QM and extended QM are less than 0.1 eV. The effect of the basis set is small—for all forms, changing the basis from the cc-pVDZ to a mixed basis (aug-cc-pVDZ on the chromophore and Tyr203 and cc-pVDZ on the rest) and to the full aug-cc-pVDZ basis leads to small red shifts for all protonation states; the largest magnitude was 0.06 eV. To estimate the effect of the rest of the protein (beyond extended QM), we compare the results of the QM and QM/MM calculations using MD snapshots (Table S13): as one can see, including the rest of the protein leads to a small blue shift of about 0.1 eV for the LE state. The results for the CT state show somewhat stronger dependence on the computational protocol. At the TD-DFT level, the CT state appears $0.3-0.5$ eV below the LE state in finite-cluster calculations. Increasing the basis set can blue-shift its energy by up to 0.03 eV. Interestingly, including the effect of the rest of protein (Table S13) leads to a larger blue-shift of the CT state than for the LE state (~ 0.3 versus ~ 0.1). The results suggest that the position of the CT state in the QM-only calculations is slightly underestimated. We attribute this effect to the overestimation of the CT state by the positively charged arginine in finite-cluster calculations; including the rest of the protein and the counterions leads to the partial screening of the arginine field and, therefore, increases the energy of the CT state. We also note that the position of the CT state is sensitive to the counterions and varies among the snapshots; this is similar to the observations reported in refs 35 and 51.

Figure 11. NTOs for the two lowest excited states of the protein-bond chromophore (on-A form, HSE-GLUP protonation state). QM/MM/ωB97X-D/aug-cc-pVDZ.
Importantly, even including this additional correction, the CT state appears below the LE state at the TD-DFT level in the neutral chromophore in all protonation states of His145 and Glu222. To further refine the positions of the LE and CT states, we computed excitation energies using XMCQDPT2; these results are collected in Table S19. Similar to the isolated chromophore, the XMCQDPT2 excitation energies of the ππ* state are red-shifted relative to TD-DFT. The inclusion of the protein environment has the same effect as in TD-DFT—overall red shift relative to the isolated chromophore. In the finite-cluster calculations, the XMCQDPT2 excitation energies of the LE state appear to be red-shifted relative to the experiment by 0.4 eV in HSD-GLUP and by 0.2 in HSE-GLUP protonation states; including the effect of the rest of the protein is expected to reduce this discrepancy. Importantly, XMCQDPT2 calculations confirm the presence of the CT state. At this level of theory, the gap between the LE and CT states is smaller than at the TD-DFT level, which is consistent with the tendency of TD-DFT to overestimate the positions of valence excited states and to underestimate the position of CT states. In the HSE-GLUP form, our best candidate for the neutral ON-form, the CT state is 0.3 eV below the LE state at the XMCQDPT2 level in finite-cluster calculations. Extrapolating to the full protein, we expect this gap to shrink to about 0.15 eV.

These comparisons provide a measure of the uncertainty of the calculations due to the basis set, QM size, and the correlation treatment; they also quantify the variations due to different protonation states. Importantly, although we cannot pinpoint the exact location of the CT state, our results indicate that it is energetically close to the LE state. Taking into account the variations in energies due to different protonation states and uncertainties of computational protocols, we estimate that the CT state is within 0.25 eV of the LE state in the neutral ON-state. We also observe that its position is very sensitive to the hydrogen-bond pattern and positions of counterions. Hence, its energy can fluctuate in the course of thermal motions, bringing it in resonance with the LE state. Hence, the CT state can be accessed either via direct excitation (since it has nonzero oscillator strength) or via nonadiabatic thermal motions, bringing it in resonance with the LE state.

Tables S17, S14, and S20 show the results for the anionic chromophore (on-B form). In this case, all methods (TD-DFT, SOS-CIS(D), and XMCQDPT2, both finite-cluster and QM/MM calculations) agree that the lowest state is LE of the ππ* character. In finite-cluster calculations, TD-DFT shows the CT state at about 0.3−0.6 eV above the LE state, but when the rest of the protein is included, this state disappears. The effect of the protein leads to a small shift of the LE state (−0.2/±0.02 eV). The effect of the protein environment beyond the extended QM is of similar magnitude as for the LE state in the ON-state (−0.03/+0.1 eV). The differences between the cc-pVDZ and aug-cc-pVDZ bases do not exceed 0.1 eV. Better treatment of electron correlation leads to substantial red-shift, up to 0.6 eV. Comparing to the experimental value (2.43 eV), the XMCQDPT2 values are within 0.1−0.2 eV, depending on the protonation state. At the XMCQDPT2 level, the best agreement is observed for HSE-GLUP and HSD-GLUP structures.

The results for the OFF-state (shown in Tables S18, S15, and S21) reveal similar trends. Regardless of the protonation state, there are no low-lying CT states. In this case, the protein environment leads to larger red shifts of 0.4−0.8 eV, depending on the protonation state. As for the LE states in the ON-states, the effect of the protein beyond the extended QM is small (0.01−0.2 eV). At the XMCQDPT2 level, the best agreement with experiment is observed for HSE-GLUP and HSE-GLUP2 structures (and the largest deviation—for HSE-GLU and HSD-GLUP2).

We note that the results of the SOS-CIS(D) calculations show rather nonsystematic behavior. Whereas TD-DFT systematically overestimates excitation energies of the LE state relatively to XMCQDPT2 in all forms and protonation states, the SOS-CIS(D) results are in between TD-DFT and XMCQDPT2 for the neutral and anionic forms of the ON-state, but not in the OFF-state, where they are above TD-DFT for some protonation states. Likewise, SOS-CIS(D) results for the CT state show a large discrepancy relative to the XMCQDPT2, which can be traced to the systematic overestimation of the CT states by the CIS method. These types of errors are expected for a low-level method relying on a perturbative account of the correlation on top of the CIS wave functions.

To graphically summarize these results, we show the computed excitation energies (with extrapolation correction) versus the experimental band maxima in Figure 12 (raw QM/MM energies are plotted in Figure S9). Whereas the absorption bands corresponding to the LE states are unambiguous, the position of the CT state is not known. In Figure 12, we show the CT excitation energy against the shoulder of the main peak (2.58 eV, see Figure 2), in order to see if there is a correlation between the computed position of the CT state and the shoulder that might suggest that the shoulder is due the absorption to the CT state.

The extrapolated excitation energies for our best candidates (selected on the basis of the structural analysis) are as follows: on-A/HSE-GLUP, TD-DFT is 3.46 eV and XMCQDPT2 is 2.93 eV, to be compared with the 3.01 experimental value; on-B/HSD-GLUP, TD-DFT is 2.88 eV and XMCQDPT2 is 2.09 eV, to be compared with 2.43 eV experimental value; on-B/HSE-GLUP, TD-DFT is 3.01 eV and XMCQDPT2 is 2.36 eV, to be compared with 2.43 eV experimental value; and for the off-A/HSE-GLUP2 form, 3.90 eV/3.62 eV; HSD-GLU, 3.78/3.44 eV; HSP-GLU, 3.89/3.50 eV; all these numbers are reasonably close to the experimental value of 3.65 eV.

Based on these results, the excitation energies in different protonation states are close and cannot be used to confidently rule out some protonation states (in contrast to other cases 36). Moreover, given the small energy differences between the respective optimized structures, different protonation states can be populated simultaneously. Overall, the extrapolated XMCQDPT2 results suggest that the least likely protonation states are HSD-GLUP for the ON-state (both neutral and anionic) and HSE-GLU and HSD-GLUP2 for the OFF-state.

The results also suggest that the shoulder at 2.58 eV in the absorption spectrum of the ON-state (Figure 2) may be due to either the presence of another major protonation state or the CT state of the neutral chromophore; a vibronic nature of the shoulder cannot be ruled out. One way to experimentally pinpoint the location of the CT state and to assess whether the shoulder is due to the CT state would be to measure the dependence of the quantum yield of the photoconversion as a...
function of the excitation wavelength. One of the implications of the revised mechanism is that direct excitation of the CT state would lead to an increased yield of the OFF-form.

C. Implications of the CT State and Possible Mechanism for Photoreaction. Figure 4 shows the essential steps of Dreiklang’s photocycle and outlines the revised photoconversion mechanism via the CT state. The CT state can be populated either via direct excitation or by nonadiabatic transition from the LE state. This is followed by a rapid proton transfer from a nearby residue. The protonated neutral radical chromophore loses the extra electron and undergoes nucleophilic addition of OH\(^{-}\) from the nearby water; this is the slowest, rate-determining step. Below we describe the computational support for the proposed mechanism.

To investigate possible excited-state pathways, we carried out geometry optimization and AIMD simulations for the CT and LE states (for the on-A-HSE-GLUP structure). Figure 13 shows the structural transformation along the AIMD/optimization trajectories. Figure 14 shows additional details of the AIMD simulations: energy profiles of the two lowest electronic states (Kohn–Sham reference state and the lowest TD-DFT state) and the charges of the key residues (chromophore and Tyr203) in these two states. The abrupt changes in the charges clearly indicate the instances of proton transfer.

In the CT state, both the optimization and AIMD simulations show rapid (on the scale of \(\sim 100–250\) fs) and barrierless proton-transfer steps leading to the formation of the protonated chromophore; this can be rationalized by an increased basicity of the imidazolone nitrogen caused by the electron attachment. First, the proton is transferred from Glu222 to the imidazolone nitrogen (this happens within 50 fs). Then Glu222 is reprotonated via proton transfer from Tyr203 (acidified as a result of the electron transfer to the chromophore) via a water-mediated pathway. This process is completed in 200–250 fs. At this point, the CT state is energetically nearly degenerate with the reference Kohn–Sham state (S\(_0\)); or, in other words, the Chro–Tyr203 radical pair (neutral protonated radical chromophore and neutral deprotonated Tyr203 radical, X6-2 structure) is nearly isoenergetic with the closed-shell ion-pair state (in which the chromophore is protonated and positively charged and Tyr203 is deprotonated and negatively charged, X7 structure). Hence, one can assume effective back-electron transfer resulting in the formation of the ground-state X7 intermediate.

On the basis of these observations, X6–2 (Chro\(^{-}\)–Tyr203\(^{-}\) radical pair) or X7 (Chro\(^{+}\)–Tyr203\(^{+}\) ion pair) are our candidates for the intermediate X observed spectroscopically in the time-resolved study.\(^{10}\) Experimentally,\(^{10}\) strong transient absorption was observed at 2.67–2.88 eV (with 100 fs kinetics). At the nanosecond scale, the formation of the intermediate X adsorbing at 2.76 eV was observed. Hence, both short-time transient absorption and longer time-scale absorption occurs at about 2.8 eV, which is 0.2 eV red-shifted relative to the absorption of the A form.

At the geometry taken from the AIMD trajectory at time \(\sim 248\) fs, the excitation energy of the ion pair X7 (computed as the lowest bright transition from the Kohn–Sham reference state) is 3.56 eV (oscillator strength 0.40), which is too high compared to the experimental absorption of X. On the other hand, the excitation energy of the radical pair X6-2 (computed as the lowest bright transition from the lowest TD-DFT state) is 2.93 eV (oscillator strength 0.22), which is close to the experimental value. The large difference in the excitation energies of the two structures can be easily rationalized: protonation of the closed-shell neutral chromophore should lead to a blue-shift relative to the parent on-A form, whereas the absorption of the radical anion (chromophore with the additional electron) or protonated neutral radical is expected to be red-shifted relative to the respective closed-shell parent species. Hence, X6–2 appears to be a good candidate for the hot \(\text{I}^*\) intermediate formed on the femtosecond time scale.\(^{10}\) Further changes in its excitation energy (leading to a small blue shift in the absorption of X relative to \(\text{I}^*\)) are anticipated as the result of the structural relaxation of the protein.
A back electron-transfer step (Chro → Tyr203) would result in the formation of X7 in which the chromophore is positively charged and, therefore, appears to be a good candidate for nucleophilic attack by the nearby water, leading to the formation of the hydrated chromophore and reprotonation of Tyr203. Our preliminary calculations indicate that this step would need to overcome a barrier—the scan along the water-imidozalinone distance (Figure S15) yields a barrier of ∼25 kcal/mol, which is very similar to the barrier of the thermal recovery reaction.20 This is a relatively crude estimate, which should be regarded as an upper bound on the barrier; more accurate estimates will be a subject of future studies. The delayed appearance of the hydrated chromophore is consistent with such a barrier. We note that, in contrast to the thermal recovery reaction, the reaction may still be rather fast, because of the high excess energy available to the system (see left panel in Figure 14). We validated (by AIMD simulations) that once the system reaches this transition state, the dynamics swiftly proceeds downhill, leading to the formation of the hydrated chromophore and reprotonated Tyr203. The AIMD simulations also show that the reverse reaction, from X7 back to the neutral chromophore and reprotonated Tyr203, is very efficient and can compete with the final step of the nucleophilic addition. This competition between the (slow) nucleophilic addition step and the (fast) reverse reaction, along with other possible channels, is likely to be responsible for a small quantum yield of the phototransformation, despite the fast and barrierless initial steps.

Figure 13. Proposed reaction initiated by the population of the CT state. Solid orange arrows show proton transfer, and dashed blue arrows show electron transfer. AIMD and excited-state optimization reveal that the steps leading to the formation of X6-2/X7 are nearly barrierless and proceed on the scale of ~100–200 fs. The last two steps (shown by dashed black arrows), back electron transfer from Chro to Tyr203, nucleophilic addition of OH− to Chro, and reprotonation of Tyr203, are hypothesized. The structures of the possible intermediates are defined in Figure S10.

Figure 14. Left: Energies of the Kohn–Sham reference state (S0) and the CT state along the AIMD trajectory on the CT potential energy surface. Right: Charges on the chromophore and Tyr203 in the Kohn–Sham reference state and the CT state (lowest TD-DFT state). Labels X5, X6, and X7 denote points along the trajectories when structures resembling these intermediates are formed (see Figure S10; X6-1 refers to HSE-GLU; X6-2 refers to HSE-GLUP2).
In contrast to the CT state, geometry optimization and AIMD simulation (1 ps long trajectory) on the LE potential energy surface do not show any significant structural changes, that is, no evidence of the ultrafast ESPT from the chromophore (Figure S14) posited in ref 10.

In summary, the following picture of Dreiklang’s photocycle emerges from the results of our theoretical modeling:

1. Excitation of the anionic form (peak B in the ON-state) leads to fluorescence.
2. Excitation of the neutral form (peak A in the ON-state) leads to nonadiabatic transition to the CT state, from which photochemical transformation ensues. It can also lead to ESPT and fluorescence from the anionic state (as in the main photocycle of wt-GFP), but this channel is strongly suppressed. Given small yields of the fluorescence and photoconversion, the main relaxation channel of on-A is radiationless relaxation to the ground state.

This picture differs from the mechanism outlined in ref 10, where it was proposed that photochemistry unravels in the anionic state, formed by ESPT of photoexcited form A. We note that the ESPT mechanism does not explain why there is no photoconversion upon the direct excitation of the anionic form. In contrast, our proposed mechanism via the CT state, which can only be populated by the excitation of the neutral form, explains the essential trait of Dreiklang: the decoupling of the fluorescence excitation (produced via the anionic form) from the photoconversion (produced by excitation of the neutral form).

Reference 10 invoked ESPT because of the observed isotope effect, but this effect can be explained by concerted proton transfer to the chromophore in the CT state. Reference 10 invoked ESPT to explain the observed short-time dynamics (510 fs) and commented that this process is an order of magnitude faster than ESPT in GFP (2 ps). This is inconsistent with the lack of strong fluorescence following the excitation of peak A and increased p_K of the chromophore, which greatly reduces the thermodynamic drive for proton transfer in the excited state. Our AIMD simulations on the LE PES show no evidence of the ultrafast ESPT. The authors of ref 10 also commented that the putative ESPT in Dreiklang is significantly less sensitive to H/D exchange than ESPT in GFP, deuterium slowing the observed kinetics by a factor of 1.5 instead of 5. Our simulations strongly suggest that what is seen on the femtosecond time scale is formation of the radical pair Chro$^+$–Tyr203* in which the chromophore is protonated on imidazoline’s nitrogen and Tyr203 is deprotonated. Our dynamics show 250 fs time for proton transfers, but one needs also to include time for nonadiabatic transition from the LE state populating the CT state. Subpicosecond time scales are very likely and there should be some isotope effect.

In addition, our revised photocycle is consistent with the following observations. As pointed out in ref 7, the essential difference between the parent system (Citrine) and Dreiklang is the upshift of the p_K of the ON-state of the chromophore (7.2 versus 5.7), which increased the effectiveness of photoconversion. A larger p_K suggests that the ESPT from the neutral form is suppressed, making the population of the CT state more competitive. Note that the fluorescence excitation spectrum (Figure 1B from ref 7) shows that very little fluorescence is produced by excitation of the peak A. We note that the photoconversion is achieved by continuous irradiation in the course of ~5 s, which suggests that the quantum yield for this process is relatively small.

Reference 7 emphasized that Tyr203 and Glu222 (and Gly65) are crucial for Dreiklang function. The authors also comment that in the fluorescent state, Tyr203 and Glu222 form hydrogen bonds to a water molecule and thereby stabilize it in close vicinity to the C65 of the chromophore, a situation that is different in the nonswitchable GFP (avGFP-S65T). This strengthens the argument that the reaction may proceed by concerted proton transfer from water to Glu222 to Chro.

We conclude by noting that neither the ET step (population of the CT state) nor the subsequent barrierless proton-transfer steps should be affected by temperature, meaning that these steps would not be suppressed at cryogenic temperatures. We also note that previous studies indicate that the photoinduced recovery of the ON-state is likely to be barrierless. These observations suggest that Dreiklang could be a good starting point for developing photoswitchable fluorescent proteins that can operate at low temperatures, as desired for cryogenic super-resolution imaging applications.

IV. CONCLUSION

In this contribution, we investigated properties of the fluorescent protein Dreiklang using high-level electronic structure methods combined with QM/MM and dynamics simulations. The results allowed us to quantify the spectral consequences of possible protonation states of the key residues around the chromophore and to refine the properties of the low-lying excited states. The key finding is that the neutral (protonated) ON-state of Dreiklang features a low-lying state of CT character (Tyr203 \rightarrow Chro), which is energetically close to the LE and is strongly affected by hydrogen bonding and thermal motions. Once this state is populated (either by direct photoexcitation or via nonadiabatic transition), the system undergoes a cascade of proton transfer steps leading to the protonation of the chromophore (on imidazoline’s nitrogen) and formation of the neutral Chro-Tyr203 radical pair, nearly iso-energetic with the ion-pair state (in which Tyr203 is in deprotonated anionic state and the chromophore is positively charged). This structure appears to be a good candidate for nucleophile addiction of hydroxide to the chromophore, coupled with reprotonation of Tyr203.

This mechanism is consistent with the available experimental data. The disrupted hydrogen-bonding network around the chromophore and its reduced acidity explain why the canonical ESPT route is strongly suppressed, making the CT channel competitive. The key role of the CT state, which is only accessible by photoexcitation of the on-A form, explains the unique feature of Dreiklang, the decoupling of fluorescence from photoswitching.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09221.

Definitions of the key structures, computational details, force field parameters for the OFF-state, detailed structural analysis, excitation energies, NTOs, inputs for excited-state calculations (extended QM) (PDF)

Q-Chem inputs used for QM/MM TDDFT calculations of excitation energies (ZIP)
Corresponding Author
Anna I. Krylov — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; orcid.org/0000-0001-6788-5016; Email: krylov@usc.edu

Authors
Tirthendu Sen — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; orcid.org/0000-0003-2913-5315
Yingying Ma — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; orcid.org/0000-0003-4004-6890
Igor V. Polyakov — Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
Bella L. Grigorenko — Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
Alexander V. Nemukhin — Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia; orcid.org/0000-0002-4992-6029

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcb.0c09221

Notes
The authors declare the following competing financial interest(s): A.I.K. is the president and a part-owner of Q-Chem, Inc.

ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Foundation (No. CHE-1856342). Y.M. was supported by China Scholarship Council during her stay at USC. I.V.P. and B.L.G. thank the Russian Science Foundation (17-13-01051) for the financial support of this study. I.V.P., B.L.G., and A.V.N. acknowledge the use of computing facilities of supercomputer resources of the Joint Supercomputer Center of the Russian Academy of Sciences and the equipment of the shared research facilities of HPC computing resources at the Lomonosov Moscow State University. We thank Dr. D. Morozov and Prof. G. Groenhof from the University of Jyväskylä for stimulating discussions. We also wish to thank Prof. Peter Dedecker for his insightful remarks that helped to improve the manuscript.

REFERENCES

NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on January 7, 2021, without the Supporting Information ZIP file. The corrected version was posted on January 12, 2021.