Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior

Published as part of The Journal of Physical Chemistry virtual special issue “MQM 2022: The 10th Triennial Conference on Molecular Quantum Mechanics”.

Maristella Alessio,* Saikiran Kotaru, Goran Giudetti, and Anna I. Krylov*

Cite This: J. Phys. Chem. C 2023, 127, 3647−3659

ACCESS Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: The robustness of nickelocene’s (NiCp₂, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp₂ is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp₂ using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp₂ originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp₂ derivatives and a model system of the NiCp₂/MgO(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp₂ coordination environment and upon its adsorption on a surface. Such resilience of the NiCp₂ magnetic behavior supports using NiCp₂ as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.

1. INTRODUCTION

Molecular magnets have potential applications as building blocks of spin-based memory devices. The individual molecules can be deposited on a surface or self-assembled into 3D architectures, giving rise to scalable magnetic materials. Using molecular magnetic units affords high chemical tunability. To be a good magnet, molecule should possess magnetic anisotropy: orientational dependence of the ability to magnetize. Microscopically, magnetic anisotropy originates from a large spin–orbit coupling (SOC) that gives rise to zero-field splitting (ZFS) of the magnetic sublevels.

Such magnetic anisotropy yields slow magnetic relaxation, providing energy levels that are well-defined by their spin \(S\) and spin projection \(M_s\) quantum numbers and well-separated in energy. Assuming that coherence times are sufficiently long, in order to realize a molecule-based quantum device, its states must then be easy to address by inducing transitions with light or microwave fields. Addressability, the ability of controlling such energy levels and generating superposition states, permits initialization, manipulation, and read-out of the individual molecular magnetic units of a quantum device. To develop individually addressable molecular magnets, one should deposit molecules on a surface and then investigate their electronic structure and magnetic behavior with a probing technique.

Spin-flip transitions between the magnetic sublevels of the system can be induced by microwaves within an electron paramagnetic resonance (EPR) setting, or via inelastic electron tunneling (i.e., within the junction of a scanning tunneling microscope (STM), revealing also the energy spacing between the magnetic sublevels (i.e., spin–orbit splitting or magnetic anisotropy). STM affords atomic-scale spatial resolution, allowing one to address individual molecules, whereas EPR experiments require larger ensembles of magnetic units (e.g., solutions or molecular crystals). Additionally, since the electronic structure of the molecule and, consequently, its response to an applied magnetic field may change significantly by the environment due to, for example, charge transfer or

Received: August 18, 2022
Revised: December 16, 2022
Published: February 9, 2023
polarization, it is important to verify that spin states and related spin dynamics (coherence or magnetic relaxation times) are retained upon adsorption on a surface.12

When grafted onto a surface or adsorbed at the apex of a scanning probe tip, molecular magnets can also serve as molecular spin probes capable of detecting states and properties of nearby nanomagnets through their magnetic interactions.13 These interactions lead to a shift of the spin sensor’s energy levels and to a perturbation of its static and dynamic magnetic properties, which, if measured, enables sensing of the nearby magnetic species. For example, when functionalizing a metallic STM tip by such spin-probe molecules, the electrons tunneling through the molecular magnet-terminated tip can induce spin-flip transitions in magnetic molecules or arrays of molecules deposited on a support, thus addressing their spin–orbit levels, magnetic anisotropy, exchange interactions, and spin-phonon couplings.

Recently, the nickelocene molecular magnet (NiCp2, Cp = cyclopentadienyl) adsorbed on metal surfaces has been investigated by STM experiments.14–16 Due to the robustness of NiCp2’s magnetic anisotropy upon adsorption and the ability to address its energy levels by STM, NiCp2 has also been used to functionalize the STM’s metallic tip, probing double spin-flip excitations as well as exchange interactions and coupled spin-vibration transitions in the NiCp2 dimer (i.e., one NiCp2 is anchored to the tip and positioned above another NiCp2 deposited on a surface).15–18 NiCp2 shows robust magnetic anisotropy after adsorption on a substrate and is minimally affected by its local environment, while being strongly sensitive to the nearby magnetic molecules. Thus, to maximize the sensitivity of the spin sensor toward the desired magnetic quantity, one should be able to mitigate the undesired interactions with the surrounding.15,20 Despite the rise of STM techniques and potential applications of NiCp2 as a spin-sensing probe, microscopic understanding of the origin of NiCp2 magnetic anisotropy and the resilience of its magnetic behavior is still incomplete. Furthermore, magnetic behavior of NiCp2 adsorption complexes has not been yet theoretically characterized beyond DFT (density functional theory) or DFT +U (Hubbard correction to DFT). Thus, affordable yet reliable computational methods capable of investigating complex and extended model systems, such as molecular magnets on a surface or their self-assemblies, are still to be developed.3

A detailed understanding of electronic structure and magnetic behavior of molecular magnets is key to interpreting experiments and designing novel magnetic materials by structural modification of their building units. In the context of molecular magnets, one target quantity is the spin-reversal barrier (i.e., magnetic anisotropy), which determines the extent to which the system can be magnetized by an applied magnetic field (i.e., susceptibility) and influences the rate of magnetization switching (magnetic relaxation time), also enabling a better control over the spin states.

Ab initio description of molecular magnets’ spin states is challenging because of closely lying electronic states and their multiconfigurational wave functions, which are not amenable to standard single-reference treatments, such as Kohn–Sham DFT, perturbation theory (PT), and coupled-cluster (CC) methods. It is desirable to have a reliable and affordable method capable of tackling both dynamical and nondynamical correlation in such molecular and extended systems. One strategy to treat molecular magnets entails using multireference (MR) methods or a broken symmetry (BS)-DFT approach, extracting magnetic anisotropy from phenomenological spin Hamiltonians.21 Recently, we reported an alternative approach based on the equation-of-motion coupled-cluster (EOM-CC) framework, implemented in the ezMagnet module22 of the ezSpectra suite.23 ezMagnet enables extracting magnetic anisotropy (from the spin–orbit splitting) and computing macroscopic magnetic properties (magnetization and susceptibility) starting from EOM-CC calculations of magnetic states and relevant properties (SOCs and angular momentum operators). Calculated macroscopic quantities can then be directly compared with experiment, bypassing the spin-Hamiltonian formalism.

The EOM-CC family of methods24−26 extends the hierarchy of black-box single-reference methods to electronically excited and open-shell systems. Among EOM-CC variants, the spin-flip (SF) method27−29 provides access to multiconfigurational states of polyradicals, making EOM-SF-CC suitable for applications to molecular magnets.30−32 Calculations of spin-related properties also requires SOCs and Zeeman interactions (i.e., the interaction of the electrons with an applied magnetic field). ezMagnet treats these relativistic interactions using a two-step state-interaction scheme.34−36 First, zero-order states are obtained from nonrelativistic EOM-CC calculations. Second, in the basis of these zero-order nonrelativistic EOM-CC states, a perturbed Hamiltonian is formed by including SOC and Zeeman terms. Using the EOM-CC wave functions, SOCs are computed as matrix elements of the Breit-Pauli spin–orbit Hamiltonian,37,38 as recently implemented in the Q-Chem software39,40 by Krylov and coworkers.41−43 Then, by applying Boltzmann statistics, ezMagnet computes macroscopic properties from the resulting partition function, following the protocol developed by Reese and coworkers.44

Ideally, the theory should be able to provide not only state energies and experimental observables, but also tools for interpreting the computed properties, thus furnishing insights. In many-body correlated theories (such as EOM-CC), one can derive a molecular orbital interpretation by employing reduced quantities (i.e., one-particle transition density matrix, and corresponding natural transition orbitals (NTOs)).42,45−51 In this way, the computed properties can be described in terms of a simple orbital picture, which is rigorously defined for many-body wave functions and is not sensitive to the basis set or the correlation treatment, such that the comparisons between different methods can be carried out.43,49,51,52 Within this orbital picture, hole–particle NTO pairs describe the transitions between spin–orbit coupled states,42 so that trends in magnetic anisotropy and barrier for spin-inversion can be rationalized based on the shape of the NTO pairs contributing to the SOC,22 and strength of exchange couplings between metal centers can be related to the frontier natural orbitals’ character and occupation.53

In this contribution, we characterize magnetic properties of the NiCp2 molecular magnet using this methodology, recently implemented in ezMagnet and the Q-Chem software,40 in order to investigate whether NiCp2’s electronic structure and magnetic behavior are sensitive to its coordination environment. To this end, we first consider isolated NiCp2, using EOM-SF-CCSD. We then modify the local ligand field and consider six differently ring-substituted NiCp2 compounds and the adsorption complex of a single NiCp2 molecule on a model surface. Our set of modified nickelocene compounds includes both electron-withdrawing and -donating substituents as well as...
two bent structures, which are used as precursors of nickelocene.
As a model surface, we consider magnesium oxide and its most commonly exposed (001) plane. Owing to its well-defined ionic character and simple cubic structure, MgO is suitable for testing our approach using simplified cluster models of NiCp2 on MgO(001). Insulating thin MgO layers are often used to mediate the interaction between the magnetic species and the metallic substrate, improving the magnetic bistability of nanomagnets. While EOM-CC methods (as well as other many-body approaches) scale steeply with the system size, which precludes brute-force applications to large molecular magnets, the combination of the spin-flip approach with TD-DFT (SF-TD-DFT) circumvents this problem, allowing us to investigate spin states of sufficiently large clusters of the NiCp2/MgO(001) complex. Benchmark studies of Cu(II) and Fe(III)-based molecular magnets have shown good agreement between SF-TD-DFT and EOM-SF-CCSD calculations and/or experiment. The benchmarks consistently show that SF-TD-DFT performs the best when deployed with the noncollinear kernel and hybrid and range-separated hybrid functionals, such as PBE0 and LRC-oPBEh. Another benchmark study of a set of binuclear transition-metal complexes have reported that the SF-TD-DFT approach provided more accurate magnetic coupling constants (i.e., spin-state energy gaps) than BS-DFT, with the additional advantage of avoiding the ambiguities associated with the use of nonunique spin projectors.

We note that the present methodology (implemented in ezMagnet) for computing molecular magnetic properties is general and can be combined with any electronic structure method that can furnish SOCs and transition angular momentum. Because calculations of SOCs and transition angular momentum are formulated using reduced density matrices, their extension to a broader class of methods is straightforward. Recent formulations of SOCs in combination with computationally more efficient than EOM-SF-CC yet reliable approaches, such as RASCI and SF-TD-DFT, extend the scope of applicability of the algorithms implemented in ezMagnet to larger magnetic systems. Taking advantage of this generality, here we investigate magnetic behavior of NiCp2 on MgO(001) using SF-TD-DFT spin states. This is the first application of SF-based approaches to describe magnetic molecules on surfaces, illustrating the utility of this methodology. For the NiCp2 molecule, we analyze the SOCs between the spin–orbit interacting states using NTOs and explain the origin of magnetic anisotropy. We then consider spin states’ ordering and their orbital character as the key descriptors of the magnetic behavior of NiCp2 in a modified surrounding. Preservation of such descriptors is the prerequisite for robust magnetic anisotropy against changes of the local environment, interpretation corroborated by our magnetic property calculations on the ring-substituted NiCp2 compounds and on the NiCp2/MgO(001) adsorption model.

The paper is organized as follows. Section 2 presents the theoretical background. We begin with a brief introduction of the SF approach and of the molecular orbital picture introduced to interpret the computed properties, followed by a recap of our formalism for computing SOCs, Zeeman interactions, and magnetic properties. Section 3 provides the computational details and describes model systems. Section 4 presents the results. Our concluding remarks are given in section 5.

2. THEORETICAL BACKGROUND

We describe open-shell molecular magnets using the EOM-SF-CC method. In SF approaches, a single-determinant high-spin state is used as a reference from which all multiconfigurational lower-spin states can be obtained by spin-flipping excitations. Within the EOM-SF-CC formalism, target-state wave functions have the following form:

\[\langle \Phi f \rangle = |\Phi f\rangle = |\Phi f M_s\rangle = S \]

(1)

where \(|\Phi f\rangle \) is the high-spin reference Slater determinant, \(e^\lambda |\Phi f\rangle \) is the CC wave function, and \(R \) is an excitation operator that flips the spin of an electron. EOM-SF provides a balanced treatment of relevant spin states (i.e., \(M_s = S - 1 \) states), does not require choosing an active space, and describes dynamical and nondynamical correlation in a single computational step. EOM-SF has been successfully used to treat ground and excited states of various molecular magnets.

We describe singlet and triplet states of NiCp2 and of the six ring-substituted NiCp2 derivatives by EOM-SF-CCSD starting from a high-spin \(S \) triplet reference. To describe the NiCp2/MgO(001) model complex, we use SF within the TD-DFT ansatz. We note that in SF calculations, only \(M_s = 0 \) states are used to compute energy gaps and state and transition properties, and that the high-spin state only serves as the reference.

Magnetic properties arise from spin–orbit and magnetic field (Zeeman) interactions. We describe these effects by a two-step state-interaction procedure: first, EOM-CC states are computed and then these states are used to evaluate matrix elements of the spin–orbit (\(H^S \)) and Zeeman (\(H^L \)) operators. The latter describes the interaction of the electrons with the external magnetic field \(\mathbf{H} \)

\[H^L = \mu_B \mathbf{H} (\mathbf{L} + g_S \mathbf{S}) \]

(2)

where \(g_s = 2.0023 \) is the free spin \(g \)-factor, \(\mu_B \) is the Bohr magneton, and \(\mathbf{S} \) and \(\mathbf{L} \) are the total spin and orbital angular momentum operators, respectively. Spin–orbit interactions are treated by using the Breit–Pauli Hamiltonian. Spin–orbit and field-perturbed states are then obtained by diagonalization of the zero-order Hamiltonian (\(H^0 \)) augmented by \(H^S \) and \(H^L \):

\[H = H^0 + H^S + H^L \]

(3)

In Q-Chem calculation of SOCs and matrix elements of the Zeeman operator is currently implemented for EOM-SF-CC, RASCI, and SF-TD-DFT, and can be easily extended to any method that can provide reduced density matrices. Note that by virtue of the Wigner–Eckart theorem, only the \(M_s = 0 \) transition density matrix needs to be explicitly computed in the SF calculations.

To gain insight into the nature of electronic states and transitions, we analyze magnetic behavior of NiCp2 using transition density matrix between spin–orbit interacting states and the resulting NTOs. In previous studies, such analysis has been carried out for diradical and iron-based molecular magnets, whose SOCs are determined by one NTO contribution only. Here, we extend this treatment to the cases in which two leading NTO pairs contribute to the transition property.

The key quantity is the one-electron transition density matrix:

\[\gamma_{pq} = \langle \Psi^\dagger | a_{pq} | \Psi \rangle \]

(4)
where a_ϕ and a_ψ are the creation and annihilation operators associated with the ϕ_α and ϕ_β molecular orbital basis. A singular-value decomposition of $\varrho_{\psi_\psi}^{\alpha\beta}$ yields the most compact description of the one-electron excitation in terms of a unique set of orbitals (hole and particle NTOs), which are independent of the method/basis set choice thus allowing a meaningful comparison of different levels of theory. In the basis of these NTOs, expectation values of one-electron operators (\hat{A}) can be computed as

$$\langle \varrho_{\psi_\psi}^{\alpha\beta} | \hat{A} | \varrho_{\psi_\psi}^{\alpha\beta} \rangle = \sum_{\kappa,\ell} \sigma_\kappa \sigma_\ell \langle \varrho_{\psi_\psi}^{\alpha\beta\kappa} | \hat{A} | \varrho_{\psi_\psi}^{\alpha\beta\ell} \rangle$$

where σ are singular values associated with the NTO pairs. Except for the trivial case of one dominant NTO pair, observables can be affected from the contribution of cross terms, which may lead to very different properties for transitions between states characterized by equivalent NTO pairs. Here, we show that nickelocene’s states with identical NTOs can have very different SOC based on the different form of their two-configurational wave function (symmetric or antisymmetric combination), see discussion in section 4 and in section 5 of the Supporting Information.

SOC is responsible for the zero-field splitting of the $2S + 1$ degenerate components of the spin S ground state, giving rise to spin-inversion barrier ($U = \text{Id} \cdot S^2$) and magnetic anisotropy (quantified by the spin-Hamiltonian parameter D). Temperature- and field-dependent magnetization and susceptibility are obtained from first- and second-order derivatives, respectively, of the resulting partition function $\ln \left(Z = \sum \exp \left(\frac{\beta E_i(H)}{kT} \right) \right)$ with respect to the field

$$M(T, H) = NkT \frac{\partial \ln Z(T, H)}{\partial H}$$

and

$$\chi(T, H) = NkT \frac{\partial^2 \ln Z(T, H)}{\partial H^2}$$

which allows direct comparison with experiment without relying on the spin-Hamiltonian formalism. In eqs 6 and 7, H is the magnetic field vector, while $E_i(H)$ are the SOC- and field-perturbed energies of the magnetic sublevels contributing to the partition function $Z(T, H)$. This computational approach is implemented in the ezMagnet software and was shown to yield accurate results for a set of small- and medium-sized iron-based SMMs. This approach is general and can be combined with any other ab initio method, which provides angular momentum and spin–orbit matrix elements (e.g., SF-TD-DFT and RASCI for more extended systems). Calculation of matrix elements of the spin operator entering eq 2 can be easily derived from spin S and spin projection M_S of the states involved.

3. COMPUTATIONAL DETAILS AND MODEL SYSTEMS

To investigate the origin of magnetic anisotropy in the nickelocene (NiCp$_2$) molecular magnet, we first consider an isolated NiCp$_2$ molecule. In NiCp$_2$, the Ni(II) transition metal ion is sandwiched between two cyclopentadienyl (Cp or C$_5$H$_5^-$) rings. NiCp$_2$ has a triplet ground state with a D^d electronic configuration. The molecule possesses a C_3 rotational axis collinear with the z direction. Here, we consider the centrosymmetric staggered molecular structure (ligand field of D_{3d} symmetry) with a mean Ni–C distance of 2.185 Å, taken from single-crystal X-ray diffraction studies. Magnetic susceptibility measurements revealed a deviation from the Curie–Weiss law below 70 K. This departure from the Curie isotropic behavior of a paramagnetic molecule has to be ascribed to the large SOC and, thus, ZFS of the magnetic sublevels (with $M_S = \pm 1, 0$) of the triplet ground state. Figure 1 shows NiCp$_2$ staggered configuration, electronic states (both triplet and singlet), and spin–orbit splitting of the triplet ground state as computed from EOM-SF-CCSD calculations.

We also examine ligand-field effects on NiCp$_2$ electronic structure (e.g., spin–state ordering and energy gaps) and magnetic behavior (e.g., magnitude of SOCs) and select a series of six differently ring-substituted NiCp$_2$ derivatives. Below we refer to the individual molecules by the numbers shown in Figure 2. In complex 1, one C–H group for each CpH$_5^-$ ring is replaced by a phosphorus atom, following the strategy adopted.
in the design of bis-cyclopentadienyl dysprosium molecular magnets to enhance spin-reversal energy barrier and operating temperature.69,70 We then examine three systems in which one hydrogen atom for each Cp framework is substituted by an isovalent functional group: Complex 2 includes two methyl groups, complex 3 has two cyano groups, and complex 6 includes two aromatic ring substituents. Preparation of complex 2 (i.e., Ni(C\(_5\)H\(_5\)R\(_2\)) with R = CH\(_3\)) is reported in refs 71 and 72. Complex 4 is selected as precursor of NiCp\(_2\)-based chains to be used as memory devices.73 Complex 5 is an example of bridged NiCp\(_2\) in which the two Cp units are linked by naphthalene.74 Structures of complexes 1–3 and 6 were optimized with \textit{ω}B97X-D/cc-pVdz for the high-spin triplet state, whereas for complexes 4 and 5, experimental bent structures were considered, as reported in ref 73 and ref 74, respectively.

We also investigate electronic structure and magnetic behavior of NiCp\(_2\) adsorbed on a support using MgO(001) as a model surface. MgO is chosen due to its insulating character and low phonon density, thereby suppressing magnetic relaxation via negligible spin-phonon coupling.75 To obtain a reliable finite-cluster model of NiCp\(_2\) on the MgO(001) surface, we used an embedded cluster approach, which is often employed in computational catalysis to describe isolated point defects or isolated adsorbed molecules on ionic surfaces.76 This structural model is well-suited for the description of individual molecular magnets on a surface, whereas using periodic boundary conditions would require large supercell to minimize the artificial molecule–molecule interactions with the periodic images. Further details can be found in section 6 of the Supporting Information.

First, we performed a DFT structure optimization of the NiCp\(_2\)/Mg\(_{60}\)O\(_{49}\) model cluster embedded in a sufficiently large array of point charges resembling the ionic MgO surface. Figure 3 shows our embedded cluster model. We increase the number of point charges to converge adsorption energy and equilibrium distance between the NiCp\(_2\) and MgO(001) surface (see Table S7). Second, we considered a smaller cut-out (i.e., NiCp\(_2\)/Mg\(_{25}\)O\(_{25}\)) of the optimized NiCp\(_2\)/Mg\(_{60}\)O\(_{49}\) model cluster and investigate spin states and magnetic properties of NiCp\(_2\) on MgO(001) using the SF-TD-DFT ansatz. For DFT structure optimizations, we employed the PBE077 functional, whereas to compute spin states, we followed recommendations in refs 32 and 53, for transition-metal compounds and used SF-PBE0 and SF-LRC-\textit{ω}PBE79 within the noncollinear formulation of SF-TD-DFT.57,58 The size and shape of the NiCp\(_2\)/Mg\(_{25}\)O\(_{25}\) quantum mechanical region was chosen to minimize the computational cost while providing a structural model comparable with models already available in the literature for adsorbates on MgO(001).49,81 STM images of NiCp\(_2\) on Cu(001)14–16 and Ag(110)17,18 show that NiCp\(_2\) is bonded perpendicularly to the surface through a Cp ring, whereas the other Cp ring is exposed to the vacuum. For these reasons, we take inspiration from previous studies on metal substrates14–18 and select the NiCp\(_2\) perpendicularly adsorbed on MgO(001) as a representative structure. Additionally, we investigate two possible adsorption sites (i.e., Ni(II) ion on top of oxygen and magnesium).

For NiCp\(_2\) and its six derivatives, triplet ground states and singlet excited states are computed using EOM-SF-CCSD, whereas for the model complex of NiCp\(_2\) on MgO(001) we employed SF-TD-DFT. All SF calculations are performed starting from a high-spin triplet state, as shown in Figure 1. This reference state is represented by a single determinant (high-spin \(M_s = 1\)) and is well-described by the CC expansion of the wave function or by Kohn–Sham DFT. From this reference, single SF excitations generate the triplet state linear combination of \(\text{S}^\dagger\text{D}\text{S}\) determinants with equal weights and three singlet states of open-shell character. Given that NiCp\(_2\) compounds have a triplet \(S = 1\) ground state, the energy barriers for spin inversion \(U = \text{D}^\dagger\text{S}^\dagger\text{D}\text{S}\) is equal to the magnetic anisotropy \(D\). Following previous studies,14–18 we obtain \(D\) from the ZFS between the three components (\(M_s = 0\); ± 1) of the lowest triplet state. The split states (and \(D\)) are obtained by diagonalizing the spin–orbit perturbed Hamiltonian of eq 3.

For isolated NiCp\(_2\) and complexes 1–4, we used Dunning’s cc-pVTZ basis set.32–44 The SOC calculations of complexes 5 and 6 of NiCp\(_2\)/Mg\(_{25}\)O\(_{25}\) adsorption complex were performed using Dunning’s cc-pVDZ basis set.32–44 As noted before,77 using cc-pVTZ rather than cc-pVDZ has a negligible effect on the state energy, magnetic anisotropy, and computed magnetization and susceptibility data (deviations are less than 1 cm\(^{-1}\) for \(D\) and within 1% for the average magnetization and susceptibility, see Tables S3 and S4 and Figure S6). For isolated NiCp\(_2\), SF-PBE0 reproduces well state ordering, magnetic anisotropy, and magnetic properties as compared with EOM-SF-CCSD (section 2 of the Supporting Information), but the relative energies are quite different (e.g., triplet-singlet energy gap is about 9800 cm\(^{-1}\) for EOM-SF-CCSD and 6500 cm\(^{-1}\) for SF-PBE0).

Importantly, the calculated SOCs of isolated NiCp\(_2\) are not sensitive to the basis set (cc-pVDZ versus cc-pVTZ), neither to

Figure 3. a) Embedded cluster setup used for structure optimization: The all-electron QM region (NiCp\(_2\)/Mg\(_{60}\)O\(_{49}\)) is treated with PBE0/6-31G\(^*\), while the outermost region contains point charges. The QM region is shown as lifted for clarity. Here, NiCp\(_2\) is on-top of Mg\(_{25}\)O\(_{25}\) adsorption site. b) Top and side views of the embedded NiCp\(_2\)/Mg\(_{60}\)O\(_{49}\) PBE0 region. c) Top and side views of a smaller cut-out (NiCp\(_2\)/Mg\(_{25}\)O\(_{25}\)) used for the SF-TD-DFT calculations. The bond of the metal with the Cp centroid is shown with blue dash lines. Color code: Ni—purple, Mg—green, O—red, C—gray, and H—white.
the ab initio method employed (EOM-SF-CCSD or SF-PBE0); see Table S10.

Open-shell reference states were treated using unrestricted Hartree–Fock (HF). For NiCp₂, spin contamination of the reference and EOM-SF-CCSD states is small: the corresponding \(S'\) values are 2.00 for \(S = 1\) and between 0.06 and 0.13 for the singlet states (see Table S1). For the six ring-substituted NiCp₂ compounds, spin contamination is less than 0.23, whereas for the NiCp₂/MgO model complex, deviations are less than 0.08 (see Tables S2 and S8).

To speed up the EOM-SF-CCSD calculations, we applied the following: (i) frozen-core approximation; (ii) Cholesky decomposition with a threshold of \(10^{-3}\) for two-electron integral calculations; (iii) open-shell frozen natural orbital (OSFNO) truncation of the virtual space with the total population threshold of 99%; and (iv) single precision execution.

All electronic structure calculations were performed using the Q-Chem software.

4. RESULTS AND DISCUSSION

For isolated NiCp₂, we computed four spin states: a triplet ground state and three singlet excited states (see Figure 1). Because of the near-degeneracy of the two frontier orbitals (here, \(d_{xz}\) and \(d_{yz}\) orbitals), the electronic structure of nickelocene follows a diradical pattern (see, for example, refs 88 and S2); the manifold of the low-lying states are derived by distributing two electrons in the two near-degenerate frontier orbitals. The high-spin triplet state with \(M_S = +1\) is single-determinantal, whereas wave functions of \(M_S = 0\) triplet and singlet states are two-configurational (require linear combination of two Slater determinants). The effective number of unpaired electrons of each state is exactly 2, indicative of a strong diradical and open-shell character (see Table S1). Figure S1 shows frontier natural orbitals for the four states. These are nearly perfect \(d_{xz}\) and \(d_{yz}\) orbitals, indicating that unpaired electrons are mainly localized on the Ni(II) metal center, with almost no involvement of the Cp rings. For each transition between the spin–orbit coupled states, two NTO pairs contribute to the overall SOC (the number of nonzero singular values is about 2). Figure 4 shows the two leading NTO pairs between states 1 and 2. Transition between states 1 and 2 involves an orbital torque from \(d_{xz}\) to \(d_{yz}\) (first NTO pair) and vice versa (second NTO pair). A similar picture describes the transition between the triplet ground state and higher singlet excited states (see Figures S2 and S3).

The SOC between the triplet ground state and the singlet excited states lifts the degeneracy of the NiCp₂ triplet ground state, which results in a low-spin (\(S = 1\), \(M_S = 0\)) ground state and a high-spin \((S = 1, M_S = \pm 1)\) doubly degenerate excited state (see Figure 1). The energy barrier between the ground state and the first excited state is about 15 \(\text{cm}^{-1}\). Due to the axial symmetry of NiCp₂ and to the spin \(S = 1\) character of its ground state, this energy barrier corresponds to the axial magnetic anisotropy \((D)\). The computed value of \(D = 15 \text{ cm}^{-1}\) agrees reasonably well with the experimentally derived \(D\) parameter, which ranges between 25.6 \(\text{cm}^{-1}\) and 36.6 \(\text{cm}^{-1}\) \(\text{mol}^{-1}\) and with the NEVPT2/def2-TZVP value of 40 \(\text{cm}^{-1}\). Our calculations confirm that \(D\) is positive, which implies that magnetic sublevel ordering is inverted with respect to molecules with negative \(D\) values, such as single-molecule magnets. The latter have the states with highest spin projection \((M_S = \pm S)\) that are degenerate and lowest in energy, while for NiCp₂ the doubly degenerate level with spin projection \(M_S = \pm 1\) is the first excited state.

Figure 5 shows the computed magnetization \(M\) for a field oriented parallel and perpendicular to the \(C_3\) rotational axis; powder magnetization \((M_{\text{pow}})\) is obtained by numerical averaging over a large set of field orientations. The magnetization curves rise with the field strength but do not saturate at strong magnetic fields. Figure 5 shows the temperature dependence of the computed susceptibility main values \((\chi_r, \chi_i, \chi_L)\) obtained by diagonalization of the susceptibility second-rank tensor. \(\chi_{xx}^T\) and \(\chi_{yy}^T\) go to zero when \(T\) approaches zero. \(\chi_{xx}^T\) continuously decreases, while \(\chi_T\) passes through a maximum. We note that these field- and temperature-dependencies of the magnetization and susceptibility are fingerprints of a spin-triplet molecule with positive axial zero-field splitting \(D\). The measured temperature dependence of the inverse of the susceptibility (black and green curves in Figure 6) shows that beyond 70 K results follow the Curie–Weiss law \((\chi \propto C/(T - \Theta))\), where \(C\) is the Curie constant and \(\Theta\) is the Weiss constant). Below 70 K, however, a deviation from this law is observed. In agreement with experiments, the computed \(\chi T\) value at 298 K is close to the expected value of 1.0 \(\text{cm}^3\text{K}^{-1}\text{mol}^{-1}\) for a spin-only \(S = 1\) system that follows the Curie law (see section 3 in the Supporting Information) and predict a deviation from linearity (Curie law) at low temperatures (red curve in Figure 6).

To explain the nature of this magnetic behavior, we combine the NTO-picture of Figure 4 (as well as of Figures S2 and S3) and the transition-density matrix based analysis of calculated orbital angular-momentum matrix elements and SOCs of Table S6 with their explicit calculation using wave functions of triplet and singlet states for a two-electron in two-orbital system of section 3 of the Supporting Information. Table S6 reports \((L_i)\) with \(i = x, y, z\) and SOC matrix elements. Orbital angular momentum between state 1 and states 2–4 is zero. However, while the calculated SOC is small between states 1 and 2 and states 1 and 3, SOC is large between states 1 and 4, which is the origin of the anisotropic magnetic behavior of NiCp₂ and deviation from the Curie law at low temperatures. We note that for the transition between states 1 and 4, it is the average value...
The spin–orbit interaction between state 1 and the higher in energy singlet excited state (state 4) is not included, then the calculations fail to reproduce the experimental trend at low temperatures (see blue curve in Figure 6). This can be explained by looking at the eigenvalue analysis of the transition density matrix. Each NTO pair contributes with the same weight to the overall SOC. However, while for states 1 and 2 and for states 1 and 3, the sign of the two leading NTO contributions is opposite, leading to the SOC cancellation, for states 1 and 4, the sign of the two SOC contributions is the same, giving rise to large SOC. El-Sayed’s rules explain why the cross terms in eq 5 (i.e., $|d H d x z L SO x z z \rangle$ and $|d H d y z L SO y z z \rangle$) are zero because of no orbital torque in between. This can be rationalized by considering the proportionality between the spin–orbit and orbital angular momentum L_z operators, and that, in the basis of real harmonics (d orbitals in the case of $L_z = 2$), average values $\langle L_z \rangle$, thus $\langle H_{SO}^{L_z} \rangle$, are zero between two identical d orbitals. In addition, by knowing triplet and singlet wave functions of NiCp$_2$ (i.e., two electrons localized in two orbitals ϕ_A and ϕ_B), one can explicitly compute transition orbital momentum and SOC between the $S = 1$ ground state and the three $S = 0$ excited states (see section 5 of the Supporting Information). The computed orbital angular momentum between states 1 and states 2−4 is zero because of their different spin (triplet versus singlet), consistent with the results in Table S6 obtained from ab initio calculations. In contrast, we obtain a zero $\langle H_{SO}^{1}\rangle$ and $\langle H_{SO}^{3}\rangle$ SOC, while SOC between states 1 and 4 is large, as predicted by the full calculation of the SOC matrix elements (see Table S6). This result can be ascribed to the different nature of the wave functions of the three singlet states:

12) $\sim (\phi_1(1) \phi_B(2) + \phi_B(1) \phi_2(2))(\alpha(1) \beta(2) - \beta(1) \alpha(2))$
13) $\sim (\phi_1(1) \phi_B(2) - \phi_B(1) \phi_2(2))(\alpha(1) \beta(2) - \beta(1) \alpha(2))$
14) $\sim (\phi_1(1) \phi_B(2) + \phi_B(1) \phi_2(2))(\alpha(1) \beta(2) - \beta(1) \alpha(2))$
Wave functions (2), (3), and (4) have similar spatial component except for a sign: In state (4), the two configurations appear with the same sign, while in state (3) they appear with the opposite sign (the weights of these configurations are fixed by symmetry, as in other diradicals with symmetry-degenerate frontier orbitals, for example, trimethylenemethane). Spatial component of wave function (2) is different. Due to the common spin component of these wave functions, for all spin–orbit couplings, only \(\langle nL_S I_n\rangle\) term of the spin–orbit operator (i.e., \(H^{SO}\)) can survive due to a nonzero \(\langle S_z\rangle\) contribution. However, due to the same sign in the spatial part of wave function (4), only \(\langle 11L_z S_z\rangle\) and thus \(\langle 11H^{SO}\rangle\) is large because of a nonzero \(\langle L_z\rangle\) term, while \(\langle L_z\rangle\) terms between states 1 and 2 and states 1 and 3 vanish, and so does the SOC.

We also consider six differently substituted NiCp₂ molecules (Figure 2), with the goal to investigate whether changes in the local ligand fields (i.e., electron-withdrawing/donating substituents or bent structures) influence the triplet-singlet energy gap and so the SOC affecting their magnetic behavior. Equilibrium structure of nickelocene does not change significantly upon substitution of hydrogen atoms with methyl, cyano, and aryl groups (Ni–Cp ring height is about 1.82 Å). After integration of \(\mathbf{P}\), the \(\mathbf{P}\)–C distance increases from the average value of 1.38 (for C–C bond) to 1.78 Å, but the sandwich structure is preserved. Therefore, nickelocene structure is resistant against ring substitution. Moreover, our calculation show that all substituted NiCp₂ molecules preserve the same spin state ordering (Table S2) and orbital character (Figures S4 and S5). Additionally, also the spin–orbit splitting (quantified by the energy barrier \(U\) or by the parameter \(D\) in Table S2) and the anisotropic magnetic behavior (Figure 7) do not change. This confirms that magnetic anisotropy of NiCp₂ is not affected by changes of the ligand field.

If one desires to use NiCp₂ molecular magnets to induce spin-flip transitions in magnetic molecules, atoms, or arrays of magnetic unit on a support, then it is important to verify whether NiCp₂ magnetic behavior is affected by the interactions with the support. If not, then any change in the spin excitation spectrum of nickelocene would reflect electronic structure and magnetic properties of the magnetic molecule in the proximity, and NiCp₂ could be used a spin sensor. To verify this assumption, we consider NiCp₂ adsorbed on a model surface (i.e., MgO(001)) and investigate its chemical and electronic structure. From the DFT structure optimizations of NiCp₂/MgO(001), we identified the O-top as the most favorable adsorption site (see Table S7). NiCp₂ does not deform upon adsorption. The staggered configuration of NiCp₂ is retained and NiCp₂ is found to adsorb perpendicularly to the surface through one Cp ring, similarly to NiCp₂ on metal substrates. The Ni–Cp ring height decreases from 1.82 to 1.78 Å upon adsorption on MgO(001), which corresponds to a small charge transfer from the molecule to the surface. The adsorption energy is small (about \(-7\) kcal/mol), indicative of...
Table 1. Energies (in cm⁻¹) of the Four Lowest States of the Isolated NiCp₂ and of NiCp₂ on Top of MgO(001), Computed Using EOM-SF-CCSD/cc-pVTZ and SF-TD-DFT/cc-pVTZ with PBE0

<table>
<thead>
<tr>
<th>NiCp₂</th>
<th>NiCp₂/(MgO)</th>
<th>NiCp₂/Mg(O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOM-SF-CCSD</td>
<td>SF-PBE0</td>
<td>SF-PBE0</td>
</tr>
<tr>
<td>1)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2)</td>
<td>9805.5</td>
<td>6552.1</td>
</tr>
<tr>
<td>3)</td>
<td>9894.2</td>
<td>6585.6</td>
</tr>
<tr>
<td>4)</td>
<td>15144.0</td>
<td>12240.5</td>
</tr>
</tbody>
</table>

“NiCp₂/(MgO)” and “NiCp₂/Mg(O)” stand for the adsorption complexes of NiCp₂/MgO(001) with the Ni atom on-top of Mg²⁺ and O²⁻ adsorption sites, respectively (cluster model: NiCp₂/Mg₂O₅). Differences between NiCp₂ and NiCp₂/MgO with SF-PBE0 are reported in parentheses.

Figure 8. Hole and particle NTO pairs of the spinless density matrix between states 1 and 2 of the NiCp₂/Mg₂O₅ adsorption complex (SF-PBE0/cc-pVTZ). Ni atom is on-top of O²⁻. Singular values σ are 0.5 and 0.5, respectively. Red, green, and blue axes indicate x, y, and z coordinates axes, respectively.

5. CONCLUSIONS

We investigated electronic structure and magnetic behavior of the NiCp₂ molecular magnet and of its derivatives (i.e., six ring-substituted NiCp₂ and the NiCp₂/MgO adsorption model) using EOM-SF in combination with the ezMagnet software. Our NO and NTO analyses of electronic states and excitations, and corresponding transition properties (e.g., SOCs) are directly extracted from the many-body correlated EOM-SF-CCSD wave functions, providing both pictorial representation of the spin–orbit coupled states and quantitative analysis of their contributions to nickelocene’s magnetic anisotropy.

For the isolated NiCp₂, calculated magnetic anisotropy and susceptibility curves agree well with experiment, reproducing the deviation from the Curie law in the low temperature regime. We demonstrated that such anisotropic magnetic behavior originates from the SOC between the triplet ground state (state 1) and the third singlet state (state 4), which is large, while coupling with lower singlet states (states 2 and 3) is small and does not affect NiCp₂’s magnetic behavior. Although NiCp₂ singlet excited states are characterized by two nearly equivalent NTO transitions (same nature and same weight), the NTO contributions to the SOC are canceling out between states 1 and 2 (or 3), while for the highest in energy singlet state, the NTO contributions have same sign and sum up, leading to a substantial SOC. This analysis of the SOCs is then combined with explicit calculation of SOCs using wave functions of triplet and singlet states for a two-electron in two-orbital system. By doing so, we found that SOC between states 1 and 4 survives because of the nature of the singlet wave function of state 4 (i.e., symmetric combination of two Slater determinants), while it vanishes between states 1 and 2 (or 3), whose wave functions are characterized by an antisymmetric combination of two leading configurations.

Qualitatively, the magnitude of D in SMMs can often be interpreted by using a simple molecular orbital picture, as has been done in earlier studies (e.g., see refs 93 and 94). However, as pointed out before, this approach is valid only for orbitally nondegenerate ground states. The working expressions in terms...
of molecular orbitals and their energies have been derived for cases where all relevant states can be expressed by a single Slater determinant (which does not admit spin-flipped states) and state energy differences can be approximated by orbital energy differences (which does not admit contributions from degenerate states). Therefore, this model is not suitable for nickelocene, whose magnetic anisotropy originates from the interaction between the three components of the triplet state and two-determinantal singlet excited states.

Upon modification of NiCp₂ ligand field and adsorption of NiCp₂ on the MgO(001) surface model, we observed that NiCp₂'s geometry, its state ordering, and orbital character of the spin states are unchanged. State ordering and character can be used as key descriptors. On the basis of such descriptors, one would expect that a robust electronic structure would be equivalent to a robust magnetic behavior. Observation that is then confirmed by explicit calculation of SOC, magnetic anisotropy, and magnetic properties. Therefore, our calculations on NiCp₂ in different local environments confirm resilience of NiCp₂ magnetic behavior and support using NiCp₂ as a spin sensor. These results advance our understanding of magnetic behavior of molecular magnets on surface models that can be used as spin sensors.

This work on the NiCp₂ adsorption model is the first study using EOM-SF approaches for tackling such complex molecule/surface adducts. This has been possible by combining the SOC implementation of SF-TD-DFT with the generality of the ezMagnet software, which can be interfaced with any method providing orbital angular momentum and SOCs. In addition, our approach has the advantage that it does not rely on spin-Hamiltonian formalism, selection of active space, or spin projections associated to the BS-DFT approach. Compared with periodic DFT+U, our SF-TD-DFT protocol does not introduce additional system-dependent parameters apart from the ones already defining the exchange-correlation functional. Moreover, our approach does not apply periodic boundary conditions neither uses plane waves. Rather, it obtains reliable structures of NiCp₂ on the ionic MgO(001) plane from a quantum mechanical cluster—point charges combined approach. The latter has the advantage to be able to investigate individual magnetic species when deposited on a surface without the need of large supercells. However, it has the limitation to be applicable to ionic surfaces only. However, chemical structures of nano-objects with metal substrates might be described well by DFT-based approaches. In this regard, the computational protocol implemented in the ezMagnet software has the potential to be combined (in addition to EOM-CC and SF-TD-DFT) with density embedding formalism⁵,⁶ (e.g., EOM-SF-CC-in-DFT or SF-TD-DFT-in-DFT) allowing us to investigate electronic structure of magnetic species on metal surfaces.

We hope that our study will motivate further applications of SF-TD-DFT combined with various embedding techniques to study even larger magnetic systems and will inspire the development of robust methodologies suitable for tackling complex electronic structures in extended structural models.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.2c05940.

Wave function analysis, basis-set effects, molar susceptibility within the Curie law, transition density matrix analysis of orbital angular momentum and spin–orbit matrix elements, explicit calculation of orbital angular momentum and spin–orbit coupling, nickelocene on the MgO surface, relevant Cartesian coordinates (PDF)

AUTHOR INFORMATION

Corresponding Authors

Maristella Alessio — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; Present Address: Department of Chemistry, KU Leuven, 3001 Leuven, Belgium; orcid.org/0000-0002-0663-5387; Email: maristella.alessio@kuleuven.be

Anna I. Krylov — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; orcid.org/0000-0001-6788-5016; Email: krylov@usc.edu

Authors

Saikiran Kotaru — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States

Goran Giudetti — Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States; orcid.org/0000-0003-3851-670X

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.2c05940

Notes

The authors declare the following competing financial interest(s): A.I.K. is the president and a part-owner of Q-Chem, Inc.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation through “CCI Phase I: NSF Center for Advanced Molecular Architectures for Quantum Information Science” (Award CHE20223563).

REFERENCES

The Journal of Physical Chemistry C

Magnetic coupling in the triplet ground state of nickelocene. A reinvestigation using inelastic neutron scattering patterns in diradicals and triradicals by density-based wave function analysis: A uniform approach.

General formulation of resolution-of-identity and quasiparticle and molecular orbital pictures. Spin-orbit couplings not needed for many-body calculations: Emergent conventional marks.

