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ABSTRACT: Observables such as two-photon absorption cross sections cannot be
computed from the wave functions of initial and �nal states alone because of their nonlinear
nature. Rather, they depend on the entire manifold of the excited states, which follows from
the familiar sum-over-states expressions of second- and higher-order properties.
Consequently, the interpretation of the computed nonlinear optical properties in terms of
molecular orbitals is not straightforward and usually relies on approximate few-states models.
Here, we show that the two-photon absorption (2PA) transitions can be visualized using
response one-particle transition density matrices, which are de�ned as transition density
matrices between the zero-order and �rst-order perturbed states. We also extend the concept
of natural transition orbitals to 2PA transitions. We illustrate the utility of this new tool,
which provides a rigorous black box alternative to traditional qualitative few-states analysis, by
considering 2PA transitions in ethylene, trans-stilbene, and para-nitroaniline.

Nonlinear optical properties enable novel technologies and
powerful spectroscopic techniques. In particular, two-

photon absorption (2PA) spectroscopy is exploited in photo-
dynamic cancer therapy, optogenetics, 3D optical storage, high-
resolution bioimaging, optical limiting, etc.1�5 Owing to di�erent
selection rules,6�9 2PA spectroscopy provides rich information
about molecular electronic structure, which is complementary to
the information provided by one-photon absorption (1PA)
spectroscopy. Theoretical modeling allows one to interpret the
observed 1PA and 2PA spectra and to connect the spectral
features with the underlying molecular structure and wave
functions.10 The ability to understand spectroscopic properties
in terms of molecular orbital theory is critically important for
rationalizing the trends and developing guidelines for the design
of new chromophores with desired properties.10�13

Reduced transition density matrices,14,15 such as transition
1PDM (one-particle density matrix, �pq), enable concise
description of the electronic transition between the two states,
�i and �f

� = �� | � �|��� �p qpq
f i

f i (1)

where p �† and q � are the creation and annihilation operators
corresponding to �p and �q molecular orbitals. In the case of
pseudoindependent electrons, �i is just a single Slater
determinant (�0), �f is a linear combination of singly excited
determinants, � Cj

b �j
b, and �pq is equal to the wave function

amplitudes, �pq = �pb�qjCj
b. Thus, the individual elements of �

correspond to the weights of the electronic transitions between
the respective molecular orbitals. Equation 1 allows one to
extend this simple molecular orbital picture of electronic
transitions to general correlated wave functions:15,16 �f�i gives

a map of a change in one-electron density between �f and �i,
which can be represented as a linear combination of one-electron
excitations:

� �|� � = � �|�� +� �p q higher excitationsf
pq

pq
f i

i
(2)

One can also interpret the transition density as the exciton’s wave
function15�17

� � � �� = �r r r r( , ) ( ) ( )
pq

pq
f i

exc h p p h
(3)

where rp and rh denote particle (electron) and hole coordinates.
The plot of �pq in spatial representation provides a picture of the
exciton, i.e., the change in electronic distribution between the
initial and �nal states.15,16,18,19 One can also compute various
quantities characterizing the exciton, e.g., average separation
between the hole and the electron

= �� | � |� �d r r r r r r( , ) ( ) ( , ) r rexc exc h p h p
2

exc h p ,h p (4)

This quantity is related to the exciton size. By using orbital
transformations, one can represent � in the most compact way,
such that the electronic transition between the two states is
described by the least number of molecular orbital pairs. The
transformation that achieves this goal is given by the singular
value decomposition (SVD) of �, and the resulting pairs of
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molecular orbitals are called natural transition orbitals
(NTOs)15,16,20

� = �� V Uf i T (5)

where the diagonal matrix � contains the singular values �K and
matrices V and U contain the molecular orbital coe�cients for
the particle and hole states

�

�

� �

� �

=

=

r V r

r U r

( ) ( )

( ) ( )

K
q

qK q

K
q

qK q

p

h

(6)

where index K marks the NTO pair corresponding to the singular
value �K. The NTO representation of the electronic transitions
removes the arbitrariness associated with a speci�c choice of
molecular orbitals and allows one to describe the exciton directly
and in the most compact form.15,16,20 Orbital choice a�ects the
wave function amplitudes (and, consequently, the resulting
transition 1PDMs), such that a wave function with a single
nonzero amplitude in one basis can be transformed into a wave
function with multiple amplitudes with similar weights in another
basis. The SVD procedure produces an essential description of
the transition. Usually, only a small number of singular values are
substantial; so by using the NTOs, one can represent the
transition density �f�i(r) and the exciton wave function by a
(very) small number of terms

� �� � � � � � �= =� �r r r r r( ) ( ) ( ) ( ) ( )f i

pq
pq
f i

p q
K

K K K
p h

(7)

� � � �� =r r r r( , ) ( ) ( )
K

K K Kexc h p
p

p
h

h
(8)

NTO analysis allows one to distinguish between the states that
can be described by a single NTO pair (such as a pure valence �
� �* excitation) or the states that have mixed character (e.g., a
mixed � � �* and � � Ry(3s) excitation). Quantitatively, the
number of distinct con�gurations contributing to a particular
transition is given by the participation ratio, de�ned as

�

� �
=

�

�
= 	

�
PR

( )K K

K K K K
NTO

2 2

4

2

4
(9)

where � = ���. For example, for � = 1 (which is the case for the
transition 1PDM for a transition between a reference and a CIS
target state), PRNTO = 1 for a CIS target state with exactly one
con�guration, 2 for a CIS state represented by the two
con�gurations with equal weights, and so on. PRNTO is closely
related to the number of entangled states, an alternative metric17

also de�ned on the basis of the transition 1PDMs. Both
quantities provide a measure of collectivity of electronic
excitation and quantum entanglement.

As per eq 2, the norm of transition 1PDM (�) quanti�es the
degree of one-electron character of a transition; it equals 1 for
purely one-electron transitions and is smaller than 1 for
transitions involving changes of state of more than one electron
(e.g., � = 0 for purely two-electron transitions). This quantity
can be used to estimate an upper bound of certain transition
properties.21,22 NTO analysis also enables comparisons of the
characters of excited states computed by di�erent electronic
structure methods, including the comparison between the wave
function and density functional theories.

Importantly, � contains all the information about electronic
transition needed to compute one-electron transition properties.
For example, the transition dipole moment is

�� � � ��� | |�� = =� �� x y z, ,f i
pq

pq
f i

pq
(10)

where �	 is the matrix of the dipole moment operator, �pq
	 =

��p|�	|�q�. Since � is directly related to the experimental
observable (e.g., oscillator strength), its analysis provides
important insight regarding the nature of electronic transition.
For example, by visualizing � or NTOs,14,15,18�20,23�26 one can
identify local and charge-transfer excitations, distinguish between
Rydberg and valence excited states, and connect the strength of
the transition with the shape of the exciton (e.g., increased
delocalization of the exciton in conjugated molecules leads to an
increase in oscillator strength, as can be readily seen from eq 10).
The NTO representation allows one to express the observables
in terms of matrix elements between just a few pairs of orbitals

�� � � � ��� | |�� = � | | �� �
f i

K
K K K

p h

(11)

thus representing matrix elements between many-electron states
as matrix elements between the orbitals.

Transition 1PDMs and the NTOs can be computed for
electronic states probed by 2PA spectroscopy, as was done, for
example, in refs 26 and 27. Whereas these quantities correctly
represent the di�erences between �i and �f, they are no longer
related to the underlying observables, the 2PA transition
moments, which are given by sum-over-all-states expres-
sions:28�31
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Here, �ni = En � Ei and 
1 and 
2 are the frequencies of the two
absorbed photons such that 
1 + 
2 = �f i. Note that the index x
in 
1x indicates the polarization of this photon and 
1x = 
1 and

2y = 
2.

Equations 12 and 13 re�ect important physics of the 2PA cross
sections, as well as other nonlinear optical properties, i.e., the
properties of the transition can no longer be understood by
considering only the initial and �nal states. Rather, all excited
states contribute to the observable. In order to gain insight into
these phenomena, few-states models (in which the sum-over-
states expressions are approximated by a few leading terms) are
often exploited.11�13,19,26,27,31 For example, ref 19 described the
2PA transitions in donor-bridge-acceptor chromophores by
plotting transition 1PDMs corresponding to the leading terms in
sum-over-states expressions and rationalized the respective 2PA
cross sections in terms of the spatial representation of the
transition 1PDMs. Such analysis, however, relies on identifying
the intermediate states that provide the leading contributions
and is rather tedious and approximate. It is well-known that the
convergence of the sum-over-states expressions is slow and that
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estimates of 2PA cross sections obtained from few-states models
di�er signi�cantly from the values computed using complete
expressions.26,27 In this Letter, we introduce a new approach for
analyzing 2PA transitions by extending the NTO concept to the
perturbed transition density matrices. This analysis allows us to
describe the character of 2PA transitions without resorting to
few-states models. Rather, the analysis produces a molecular
orbital picture of the virtual states that provide the leading
contributions to the 2PA transition moments.

We begin by recasting the 2PA transition moments as

�
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where we use the resonant condition 
1x + 
2y = �f i to express
the 2PA transition moments as a function of just one photon
frequency. To derive practical expressions that circumvent
explicit calculations of all excited states, the above expressions are
rewritten in the following form

	 � �= � �� | | � + � 
 | |��	 	�M X X( ) ( )xy
f i

x f
y

i f
y

i1
x x1 1

(16)

	 � �� = � ��| | � + � 
 | |� �	 	� � �M X X( ) ( )xy
i f

y i
x

f i
x

f2
y y2 2

(17)

where the response vectors, X and X�, are computed by solving
auxiliary response equations.28�30,32 The resulting approach is
formally and numerically equivalent to the sum-over-states
expressions. Within the formalism outlined in refs 30 and 32, the
response vectors are

	 �
 � � + = ��| |� �	X H E( )k k x k
x

I1
x1 (18)

	 �� � = �� | |��	H E X( )k x k I
x

k1
x1 (19)

where �I’s denote Slater determinants from the target-states
manifold. The response vectors are related to the �rst-order
response33 of �k to the perturbation with frequency 
x:
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(The �rst-order response vector for state k is not orthogonal to
the zero-order state k unless one uses the �uctuation operator,
�� � ��k|�|�k�, instead of the dipole operator in perturbation
theory.)

Within the equation-of-motion coupled-cluster singles and
doubles (EOM-CCSD) framework,34�36 we rewrite eqs 16�19
by replacing the Hamiltonian H with the similarity-transformed
Hamiltonian (H�= e�THeT), the dipole operator � with similarity-
transformed dipole operator (��= e�T�eT), and ��k| and |�k� with
the left and right EOM amplitudes (��0Lk| and |Rk�0�,
respectively).30

The inspection of eqs 16 and 17 reveals that the 2PA transition
moments can be computed as the sum of the two transition
dipole moments: one between �i and the �rst-order perturbed
�nal state (�f

(1)) and another between �f and the �rst-order
perturbed initial state (�i

(1)). Equations 16 and 17 can then be
cast in the following form
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where we introduced new 1PDM-like quantities, the response
transition 1PDMs, �±
 (denoted 
DM below)
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where �Xi,f� denotes the norms of the response vectors and
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Here we use the normalized response states so that the analogy
with the interstate 1PDMs is preserved. Thus, 
DM for a
particular f � i transition is a weighted sum of two terms: the
transition density matrix between the initial state and the
normalized perturbed �nal state and the transition density matrix
between the normalized perturbed initial state and the �nal state.
The weights of these partial 
DMs (e.g., �+
1x

f�Xi and �+
1x

X�f�i) are given
by the norms of the �rst-order perturbed states (response
vectors). The magnitudes of these norms quantify the magnitude
of the response, e.g., the �rst-order response function becomes
large when the perturbing frequency is resonant with the zero-
order states. The norms of partial 
DM quantify one-electron
character of the “transition” between the respective zero-order
and (normalized) �rst-order perturbed state. As in the case of
one-electron interstate properties, one-electron character is a
requisite quantity determining the magnitude of the observ-
ables.21,22 
DMs and the norms of response vectors are
frequency-dependent.

As in the case of 1PA transition properties, all molecular orbital
information related to the 2PA transition is encoded in these

DMs, e.g., the orbitals that give rise to the response wave
functions due to electric �eld of frequency 
1 or 
2, the orbitals
involved in the transitions between the �rst- and zero-order wave
functions, the dependence of 2PA response on frequency 
1 or

2 (and indirect dependence on 
2 or 
1 due to the resonance
condition for 2PA), etc. Equations 24 and 25 allow one to
rationalize the 2PA transition moment as a �rst-order perturbed
(by �eld 
1 along x) transition density between the initial and
�nal states interacting with the dipole �eld of the second photon
(with 
2 polarized along y), with the two photons satisfying the

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b01422
J. Phys. Chem. Lett. 2017, 8, 3256�3265

3258

http://dx.doi.org/10.1021/acs.jpclett.7b01422


resonance condition, 
1 + 
2 = �f i. Because of the tensor nature
of the 2PA process, there are three 
DMs (for x, y, z
polarizations) for each f � i and i � f transition. Although the
analysis and visualization of these 
DMs can be performed in the
basis of canonical molecular orbitals, here we perform SVD of

DMs to obtain NTOs for 2PA transitions.

Before proceeding to the numerical examples, let us discuss
eqs 24 and 25 in more detail. In Hermitian theory, eq 25 would
be a Hermitian conjugate of eq 24 for degenerate photons (
1 =

2) with the same polarization. In the EOM-CC framework, this
is not the case, but as will be shown below, the di�erences
between the NTOs computed for �+
1x

f�i and ��
1x
i�f are very small,

which is similar to other examples of left-right and right-left
interstate properties.37,38 Thus, we focus our analysis on eq 24.
The two partial 
DMs contributing to eq 24 can be analyzed
separately. The SVD decomposition of �+


f�Xi yields NTOs
connecting the �nal state and the perturbed initial state (Xi),
whereas �+


X�f�i yields NTOs connecting the initial state and the
perturbed �nal state (X�f). It is instructive to consider two limiting
cases, when either �Xi� or �X�f� is zero. In such cases, the 2PA
response is dominated by either the response of the �nal state or
the response of the initial state; the NTOs of the full 
DM are
the same as those of the respective partial 
DM, and the singular
values of 
DM are equal to the respective singular values of the
partial 
DMs scaled by the norm of the corresponding response
vector: �Xi

+
1x��f�Xi or �X�f
+
1x��X�f�i. The participation ratio of

the full 
DM then equals the participation ratio of the partial

DMs for which the response-vector norm is not zero. In a
general case, the magnitudes of �Xi� and �X�f� might be
comparable. Then the NTOs of the full 
DMs are not
necessarily related to the NTOs of the partial 
DMs, especially
when both partial 
DMs contribute to the NTOs of the full

DM (this case is illustrated below by the � � �* 2PA transition
in para-nitroaniline). The situation is di�erent when the norms
of the response vectors are nonzero but only one partial 
DM
contributes to a given dominant NTO pair of the full 
DM (as
illustrated by the 2PA transitions for ethylene and trans-stilbene).

If the singular vectors of the full transition 
DMs are
approximately the same as the singular vectors of the partial
transition 
DMs, then the singular values of 
DM are related to
the singular values of the partial 
DMs by

� � � �� 
 � � + � 
 �	 	� � + � + 
 �X Xf i f i
i

f X
f

X i
appr

x i x f1 1
(27)

� � � �� 
 � � + � 
 �	 	� � � � � 
 �X Xi f i f
f

i X
i

X f
appr

y f y i2 2
(28)

Thus, one can use the di�erence between the exact singular
values of 
DMs and the approximate singular values (�appr)

computed using eqs 27 and 28 as a simple numerical diagnostic of
the similarity between the NTOs of the full and partial 
DMs.
Alternatively, one can compute the overlap between the NTOs
themselves.

We implemented the calculation of the NTOs for 
DMs in a
development version of Q-Chem39,40 using the existing infra-
structure for wave function analysis.15,41 Below, we illustrate the
utility of the NTO analysis of 
DMs computed within the EOM-
EE-CCSD framework by considering the 1Ag � 2Ag transition in
ethylene and the 1Ag � 5Ag transition in trans-stilbene. The
peaks corresponding to these transitions dominate the 2PA
spectra.26,27 We also analyze the � � �* charge-transfer
excitation (1A1 � 2A1) in para-nitroaniline. In contrast to the
two transitions in ethylene and stilbene, the large 2PA cross
section of this transition arises due to the di�erence in the dipole
moments of the ground and excited states and not due to a strong
coupling with a third state. We use the daug-cc-pVTZ basis for
ethylene, the daug(-d)-cc-pVDZ basis for trans-stilbene, and the
aug-cc-pVDZ basis for pNA. We freeze the core electrons for
trans-stilbene and pNA. Ethylene (D2h point group) and trans-
stilbene (C2h point group) are in the xy-plane with the x-axis
being the long axis, and pNA (C2v point group) is in the xz-plane
with the dipole moment along the z-direction. The Cartesian
coordinates of these systems are taken from refs 26 and 42; they
are also given in the Supporting Information. We use Gabedit43

to visualize NTOs.
The 1Ag � 2Ag 2PA transition in ethylene with degenerate

photons26 has large Mzz and moderate Mxx moments, as shown in
Table 1. The relative magnitude of Mzz and Mxx changes when
di�erent photon frequencies are used. With the photon
frequencies chosen here (see Table 1), the Mxx moments
increase considerably and become larger than Myy and Mzz
moments. Below, we analyze the orbital picture of the Mzz
moments for the degenerate 2PA case and Mxx moments for both
degenerate and nondegenerate 2PA.

We begin by analyzing the dominant contributions to the Mzz
and Mxx 2PA moments in ethylene by using a three-states model,
as was done in ref 26. The NTOs for regular 1PDM of the 1Ag
and 2Ag pair (Figure S1 in the Supporting Information) show
that this transition has Rydberg � � Ry(pz) character. By
analyzing the symmetries and transition dipole moments
between these two states and other nearby states, one can
identify the 1B1u state as the state providing large contributions
to Mzz via the 1Ag � 1B1u � 2Ag channel. The dominant NTO
pairs of the individual 1Ag � 1B1u and 1B1u � 2Ag transitions
have � � Ry(s) and Ry(s) � Ry(pz) characters, respectively.
From this three-states picture, one can infer that the dominant
contribution to Mzz arises from the � � Ry(s) � Ry(pz) orbitals.

Table 1. Photon Frequencies (in eV), 2PA Transition Moments (in au), and Microscopic Cross Sections (in au) for Selected 2PA
Transitions in Ethylene, trans-Stilbene, and para-Nitroaniline

system transition 
1 
2 Mxx Myy Mzz �2PA

ethylene 1Ag � 2Ag 4.20 4.20 19.6 11.4 46.1 727
2Ag � 1Ag 19.0 11.3 44.7

ethylene 1Ag � 2Ag 7.81 0.60 �599.1 �28.5 94.4 64981
2Ag � 1Ag �571.7 �27.9 91.7

ethylene 1Ag � 2Ag 0.60 7.81 �599.1 �28.5 94.4 64981
2Ag � 1Ag �571.7 �27.9 91.7

trans-stilbene 1Ag � 5Ag 3.15 3.15 475.9 �3.4 10.1 41591
5Ag � 1Ag 432.6 �3.8 9.2

para-nitroaniline 1A1 � 2A1 2.31 2.31 7.2 1.0 �139.0 3622
2A1 � 1A1 1.8 �0.9 �133.1

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b01422
J. Phys. Chem. Lett. 2017, 8, 3256�3265

3259

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01422/suppl_file/jz7b01422_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01422/suppl_file/jz7b01422_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.7b01422


In a similar fashion, the three-states model analysis of Mxx reveals
large contribution from the terms involving the 1B3u state, owing
to the strong dipole coupling of 1B3u with both the initial and the
�nal states. The dominant NTO pairs of the individual one-
photon transitions, 1Ag � 1B3u and 1B3u � 2Ag, have � � �*
and �* � Ry(pz) characters, respectively. Thus, one can ascribe
the � � �* � Ry(pz) orbital character to the Mxx moment.

The dominant NTOs of 
DMs for the 1Ag � 2Ag 2PA
transition are shown in Figure 1 (the NTOs for 2Ag � 1Ag are
shown in the Supporting Information). The quantitative analysis
is given in Tables 2 and 3. The z-component of the 1Ag � 2Ag
and 2Ag � 1Ag 
DMs gives rise to two NTO pairs: pair (a)
represents a transition between � and Ry(s) orbitals, and pair (b)
represents a transition between Ry(s) and Ry(pz) orbitals. The
dominant NTO pairs for the x-component of the 1Ag � 2Ag and
2Ag � 1Ag 
DMs represent two transitions: pair (a) represents a

transition between � and �* orbitals, and pair (b) represents a
transition between �* and Ry(pz) orbitals. Thus, the orbital
description of the 2PA transition inferred from three-states
models is obtained directly from the NTO analysis of the
di�erent components of the transition 
DMs, without making
any assumptions on the nature of the electronic states
dominating the sum-over-states. The singular values for these
NTO pairs are given in Tables 2 and 3. To understand the origin
of these NTO pairs, we deconstruct the 
DM into the partial
transition 
DMs, according to eqs 24 and 25, and perform NTO
analysis of these partial transition 
DMs. For both the i � f and f
� i transitions, the dominant NTO pair of the partial transition

DMs corresponds to one (or the other) of the NTO pairs of the
full transition 
DM. Further, the singular values of the NTO
pairs (a) and (b) of the full transition 
DMs can be reproduced
accurately with the norms of the response vectors and the

Table 2. NTO Analysis of the z-Components of �DMs (Ethylene, �1 = �2 = 33911 cm�1)

transition NTO � �Xi
±
z� �partial

f�Xi �X�f
±
z� �partial

X�f�i �appr
a PRNTO

full

i � f pair

1Ag � 2Ag 8.5 41.9 1.04
(a) 40.44 �0 0.97 40.62
(b) 5.45 0.64 �0 5.47

2Ag � 1Ag 41.8 8.3 1.04
(a) 38.97 0.94 �0 39.12
(b) 5.28 �0 0.65 5.38

aSee eqs 27 and 28 for the de�nition of �appr.

Table 3. NTO Analysis of the x-Components of �DMs (Ethylene)

transition NTO � �Xi
±
x� �partial

f�Xi �X�f
±
x� �partial

X�f�i �appr
a PRNTO

full

i � f pair


1 = 
2 = 33911 cm�1

1Ag � 2Ag 12.2 23.1 1.20
(a) 22.10 �0 0.96 22.27
(b) 7.00 0.59 �0 7.24

2Ag � 1Ag 23.1 11.6 1.20
(a) 21.32 0.93 �0 21.46
(b) 6.64 �0 0.60 6.94


1 = 63000 cm�1, 
2 = 4821 cm�1

1Ag � 2Ag 373.0 13.3 1.01
(a) 14.70 �0 0.95 12.67
(b) 250.16 0.67 �0 250.36

2Ag � 1Ag 448.0 6.8 1.09
(a) 409.29 0.91 �0 409.29
(b) 2.28 �0 0.55 3.72


1 = 4821 cm�1, 
2 = 63000 cm�1

1Ag � 2Ag 7.0 441.9 1.09
(a) 423.66 �0 0.96 423.66
(b) 2.71 0.54 �0 3.78

2Ag � 1Ag 13.3 349.9 1.01
(a) 13.19 0.92 �0 12.22
(b) 236.30 �0 0.68 236.50

aSee eqs 27 and 28 for the de�nition of �appr.
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singular values of the partial transition 
DMs, according to eqs
27 and 28. Thus, the dominant NTO pairs for the components of
the full transition 
DMs correspond to the NTOs of the partial
transition 
DMs.

Figure 1. Dominant NTOs (isovalue = 0.003) for the Mzz (left) and
Mxx (right) 2PA transition moments for the 1Ag � 2Ag 
DMs
(ethylene, 
1 = 
2 = 33911 cm�1).

The singular values of the two dominant NTO pairs in the
degenerate 2PA case are di�erent due to the di�erent magnitudes
of the dominant amplitudes of the response vectors X and X�.
When the photon frequencies are di�erent, the denominator, �ni
� 
 or �nf + 
, of one of the sum-over-states terms becomes
smaller in the right-hand side term of eqs 12 and 13. The
amplitudes of the response vectors that correspond to the
transition between the orbitals involved in the transitions
between the states (i and n or f and n) would be enhanced by
the ampli�ed norm of the response vector. The singular values of
the NTO pairs arising from this response vector (or due to the
transition between the perturbed state and the zeroth-order
state) would be dominant. For example, in the case of
nondegenerate 2PA in ethylene with 
1 = 63000 cm�1 and 
2
= 4821 cm�1, the sum-over-states is dominated by the term
involving the B3u state due to smaller �ni � 
1 and �nf + 
2
relative to �nf + 
1 and �ni � 
2, which is re�ected in large norms
of the X-vectors in eqs 24 and 25. These large norms result in
large singular values for the NTOs of the full 
DMs
corresponding to the f � Xi and i � Xf transitions for the f �
i and i � f 2PA transitions, respectively. Similarly, in the case of
nondegenerate 2PA in ethylene with 
1 = 4821 cm�1 and 
2 =
63000 cm�1, the sum-over-states is dominated by the term
involving the B3u state due to smaller �nf + 
1 and �ni � 
2
relative to �ni � 
1 and �nf + 
2, which leads to large norms of
the X�-vectors in eqs 24 and 25. These large norms result in large
singular values for the NTOs of the full 
DMs corresponding to
the X�f � i and X�i � f transitions for the f � i and i � f 2PA
transitions, respectively. This suggests that the orbital character
of the 2PA transition produced by NTO analysis does not
depend on the choice of 
1 and 
2 when both �+
1

f�i and ��
2
i�f are

analyzed together (only the directions of the NTOs are
reversed). We note that PRNTO for Mxx drops for nondegenerate
2PA cases relative to the degenerate 2PA case due to the
enhancement of one of the two components of the sum-over-
states term involving the 1B3u state in the nondegenerate case.
Moreover, the PRNTO values for the f � i and i � f 2PA
transitions are swapped when 
1 and 
2 are swapped. The
changes in the 2PA regime can be quanti�ed by analyzing the size

of the exciton;17 see eq 4. The values for dexc for the 2PA and
relevant 1PA transitions are given in Table S2 in the Supporting
Information. As one can see, dexc values for the partial and full

DMs depend strongly on the values of two frequencies. In
particular, we observe that as 
1 approaches the frequency of the
1Ag � 1B3u transition, dexc for the 
DMs approach dexc for the
respective 1PA transitions, 1B3u � 2Ag and 1B3u � 1Ag. This
re�ects the change in the 2PA regime; as one approaches the
resonant condition with the 1B3u state, the 2PA transition
becomes increasingly more like the two 1PA transitions via this
state. Thus, one can use the comparison between the exciton size
for the 2PA transitions and the exciton size of the 1PA transitions
(between the initial/�nal states and the intermediate state) as a
simple indication of the validity of the three-states model.

The EOM-CCSD 2PA spectra with degenerate photons for
trans-stilbene have been reported recently in ref 26. The
dominant 2PA peak corresponds to the 1Ag � 5Ag transition.
Unlike the 1Ag � 2Ag 2PA transition with degenerate photons in
ethylene, this transition is characterized by large Mxx transition
moments (the molecule is in the xy-plane in our calculations), as
shown in Table 1. The three-states model analysis in ref 26
reveals that the terms involving the 1Bu state provide leading
contributions to Mxx, primarily due to the large transition dipole
moments between this state and the two Ag states.

Figure 2. Dominant NTOs (isovalue = 0.003) for the 1Ag � 1Bu and
1Bu � 5Ag transitions of trans-stilbene. The weights of each NTO are
given �K

2 .

The dominant NTO pair(s) of 1PDMs of the 1Ag � 1Bu and
1Bu � 5Ag transitions in trans-stilbene are shown in Figure 2.
Whereas the 1Ag � 1Bu 1PA transition is dominated by one
�(au) � �*(bg) NTO pair, the 1Bu � 5Ag 1PA transition is
characterized by two NTO pairs that correspond to the �*(bg)
� Ry(pz) and �(bg) � �(au) transitions. Whereas the three-
states model analysis of the 2PA transition reveals a dominant
1Ag � 1Bu � 5Ag channel, it is not clear which orbitals are
important for the 2PA transition. Because two NTO pairs
contribute to the 1Bu � 5Ag 1PA transition, it is not obvious
whether both pairs are also important in the 1Ag � 5Ag 2PA
transition. Deeming only the �*(bg) � Ry(pz) NTO pair with a
slightly larger singular value in the 1PA transition to be important
for the 2PA transition based on the three-states model analysis
could be misleading as the sum-over-states terms not included in
the few-states analysis could increase the overall contribution of
the �(bg) � �(au) NTO pair relative to the contribution from the
�*(bg) � Ry(pz) NTO pair. In addition, within such a three-
states model, it is di�cult to quantify contributions from di�erent
1PA NTO pairs to the 2PA transition moment.

The NTO analysis of the x-component of the 
DMs for the
1Ag � 5Ag 2PA transition with degenerate photons in trans-
stilbene reveals the orbitals involved in the 2PA transition in a
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straightforward manner, as shown in Figure 3 and Table 4.
Similarly to the NTO analysis of the x-component of the 
DMs
for the 1Ag � 2Ag 2PA transition in ethylene, here the two
dominant NTO pairs represent either a � � �*(bg) (NTO pair
(a)) or �*(bg) � Ry(pz) (NTO pair (b)) transition. In terms of
the dominant contributions to the 2PA moment, these two NTO
pairs result in the dominant � � �* (bg) � Ry(pz) channel. In
addition, there is a third non-negligible contribution from NTO
pair (c), which originates from the �(bg) � �(au) NTO pair in
the 1Bu � 5Ag transition. NTO pairs (c) and (a) represent the
2PA channel �(bg) � �(au) � �*(bg). The larger norms of the
response vectors compared to other systems studied in this
Letter are consistent with the larger 2PA cross sections for this
transition. The origin of the dominant NTO pairs in the 1Ag �
5Ag and 5Ag � 1Ag transition 
DMs can be traced back to the
partial transition 
DMs. As shown in Table 4, the singular values
of these two dominant NTO pairs of the full 
DMs can be
approximated using the norms of the response vectors and the
singular values of the dominant NTO pair(s) of each of the two
component partial transition 
DMs, according to eqs 27 and 28.
We also note a larger PRNTO (1.6 in trans-stilbene versus 1.0�1.2
in ethylene), which re�ects a more complex character of the 1Ag
� 5Ag transition in trans-stilbene relative to the 1Ag � 2Ag
transition in ethylene.

Figure 3. Dominant NTOs (isovalue = 0.003) for the x-components
of the 
DMs for the 1Ag � 5Ag transition (trans-stilbene, degenerate
photons).

The � � �* charge-transfer 2PA transition between 1A1 and
2A1 states in pNA with degenerate photons is characterized by
large Mzz transition moments (z is along the dipole moment), as
shown in Table 1. These large 2PA transition moments are a
consequence of the large di�erence in the dipole moments of the
initial ground and �nal excited states. Within the two-states
model, Mzz transition moments can be approximated as

	
� �

	

� �

	

� �

	

� �

	

� �
�� | |����| |��

�
+

�� | |����| |��

	 +

�
�� | |� ��� | |��

	 �
+

�� | |� ��� | |��

+

�
�

�
��

�

�
��

�

�
��

�

�
��

M ( )zz
f i f

z
i i

z
i f

z
i i

z
i

if

f
z

f f
z

i

fi

f
z

f f
z

i

(29)

	
� �

	

� �

	

� �

	

� �

	

� � �
��| |����| |� �

	 +
+

��| |����| |� �

�

�
��| |� ��� | |� �

+
+

��| |� ��� | |� �

	 �

�
�

�
��

�

�
��

�

�
��

�

�
��

M ( )zz
i f i

z
i i

z
f

if

i
z

i i
z

f

i
z

f f
z

f i
z

f f
z

f

fi

(30)

Rearranging the above expressions, Mzz transition moments can
be expressed in terms of the di�erence in the dipole moments of
the initial and �nal states as follows
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Mzz
f�i and Mzz

i�f values computed using the above two-states model
expressions equal 146.3 and 134.5 au, respectively, which are
similar to the EOM-EE-CCSD values given in Table 1. These
expressions suggest that this 2PA transition can be characterized
by the same single NTO pair, � � �*, as the corresponding 1A1
� 2A1 1PA transition (Figure S2 in the Supporting
Information). These expressions also suggest that the singular
values of the NTO pair for the 2PA transition can be
approximated in terms of the singular values for this NTO pair
for the 1PA transition and the change in the dipole moment upon
excitation as follows:
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(33)

Table 4. NTO Analysis for x-Components of the �DMs of trans-Stilbene (�1 = �2 = 25400 cm�1)

transition NTO � �Xi
±
x� �partial

f�Xi �X�f
±
x� �partial

X�f�i �appr
a PRNTO

full

i � f pair

1Ag � 5Ag 62.8 85.4 1.62
(a) 73.99 �0 0.93 79.65
(b) 33.08 0.50 �0 31.59
(c) 19.40 0.32 �0 20.25

5Ag � 1Ag 85.6 57.6 1.58
(a) 70.00 0.87 �0 74.75
(b) 30.65 �0 0.51 29.30
(c) 17.04 �0 0.31 17.86

aSee eqs 27 and 28 for the de�nition of �appr.
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This qualitative picture is con�rmed by the NTO analysis of
the z-components of 2PA transition 
DM, which produces a
single NTO pair involving the � and �* orbitals, as shown in
Figure 4. These NTOs are practically the same as the regular
NTOs (shown in Figure S2 in the Supporting Information). The
singular values for this NTO pair in the 2PA and 1PA transitions
are 58.4 and 0.85, and the dipole moments of the initial and �nal
states are 2.7 and 5.7 au, respectively. Using eq 34, a singular
value for the f � i transition, and the dipole moments of the two
states, we calculate the singular value for the dominant 2PA NTO
pair as 61.2, which is similar to the actual singular value of 58.4.

Figure 4. Dominant NTOs (isovalue = 0.005) for the z-components
of the 
PDM for the 1A1 � 2A1 2PA transition (pNA, degenerate
photons).

The PRNTO for the 2PA i � f and f � i transitions are given in
Table 5. These values are close to 1. In contrast to ethylene and
stilbene examples, the PRNTOs of the partial transition 
DMs are
large (>20) as these partial transition DMs have signi�cant i � i
or f � f character. This large di�erence between the PRNTOs of
the full and partial 
DMs indicates that this 2PA transition has
charge-transfer character that is driven by the change in the
dipole moments of the initial and �nal states (and not by the
dipole coupling to a third state). The dominant NTO pair for the
full 2PA transition 
DMs is not the dominant NTO pair in
partial transition 
DMs (�f�Xi and �X�i�f) as the Xi and X�i
response states have dominant �f-like character. This can be
explained using the components of the sum-over-states terms in
eqs 29 and 30. The �rst and third right-hand-side (RHS) terms
contribute to the partial transition 
DMs involving the X-
vectors, while the second and fourth RHS terms contribute to the
partial transition 
DMs involving the X�-vectors. The third term
(with sum-over-states index n = f) in eq 29 is larger than the �rst
term (with sum-over-states index n = i), and hence, the NTOs
from the f � f transition dominate the NTOs from the i � f
transition. Similarly, the fourth term (with sum-over-states index
n = f) in eq 30 is larger than the second term (with sum-over-
states index n = i), and hence, again the NTOs from the f � f
transition dominate the NTOs from the i � f transition. As a
result, NTOs corresponding to � � �* transitions are
suppressed in �f�Xi and �X�i�f. In fact, the � � �* NTO pair is
di�cult to identify for �f�Xi and �X�i�f through visualization (even
for �i�Xf and �X�f�i, the dominant NTO pair looks slightly di�erent
from the dominant NTO pair for the corresponding full 
DM
for 2PA transition), which invalidates the use of eqs 27 and 28.

Table 5. NTO Analysis for z-Components of the �DMs for
the 2PA Transition of para-Nitroaniline (�1 = �2 = 18626
cm�1)

transition i � f � PRNTO
full PRNTO

f�Xi PRNTO
X�f�i

1A1 � 2A1 41.03 1.20 26.14 20.61
2A1 � 1A1 58.41 1.12 20.30 25.90

In summary, we presented the extension of the theory of
transition 1PDMs and their analyses in terms of NTOs to the
2PA transitions. This new tool can accurately elucidate the
orbital picture of 2PA transitions in a compact way and without
guessing which electronic states provide dominant contributions
to the 2PA transition moments. It also allows one to distinguish
between two types of bright 2PA transitions: those that are
driven by the strong dipole coupling with a particular virtual state
versus those that have charge-transfer character and are driven by
the large di�erence in the dipole moment in the initial and �nal
states. The NTOs of 
DMs also aid the visualization of 2PA
transitions. Similar to the standard NTO analysis, we �nd that
2PA transitions can often be described using just a few pairs of
hole and particle NTOs of 
DM. In addition, this analysis
captures the changes in orbital characters of 2PA transitions for
di�erent photon frequencies, which cannot be captured in a
straightforward manner using the traditional few-states analysis.
This analysis tool can help to elucidate the role of molecular
structure and intermolecular interactions on the nonlinear
spectra. Accurate electronic structure methods for calculating
2PA cross sections augmented by this analysis tool for
interpreting the calculated results not only reveal the orbital
character of the important peaks in experimental 2PA spectra but
can also aid the design of new molecules with desirable optical
properties.
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