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An implementation of the projected gradient method for locating the minimum energy
crossing point between electronic states of different symmetry/multiplicity within the
equation-of-motion coupled-cluster family of methods is reported. The method is applied
to characterize the intersections between electronic states in Nþ

3 , NO2, and para-benzyne
using the excitation energies, ionization potential, and spin-flip variants of the equation-
of-motion coupled-cluster methods. The performance of the algorithm is discussed and
recommendations for improving the convergence in problematic situations are given.
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1. Introduction

The dynamics of chemical reactions is often
interpreted in terms of nuclear motions on a single
potential energy surface (PES), which is based on the
(non-relativistic) Born–Oppenheimer (BO), or adiabatic,
approximation [1]. The BO approximation separates
slow and fast degrees of freedom: the nuclei move in
the mean field created by the electrons, which adjust
their positions instantaneously. This is valid for many
chemical reactions, however there is a plethora of
processes for which the single-surface approximation
breaks down [2]. Examples of such nonadiabatic
processes, which involve transitions between different
electronic states, include organic photochemistry [3]
with a significant share of biologically important
chemical reactions [4], as well as spin-forbidden
processes [5].
Consider, for instance, the isomerization of retinal,

an important step in the chemistry of vision [6].
A prototype reaction [7], the cis–trans photoisomeriza-
tion of substituted ethylene, is sketched in figure 1.
Upon electronic excitation, the system slides
downhill towards the minimum on the excited state
PES, which corresponds to a local maximum on the

lower PES. At that point, the two surfaces approach
each other, and the probability of a transition back
to the ground state increases. Once on the ground
state PES, the system relaxes to either the cis-or trans-
product.

A set of points of confluence of two adiabatic PESs
forming a continuous hyperline is called an intersection
seam [8]. A nonadiabatic transition from one electronic
state to another is more likely to happen near the crossing
and is enabled by electronic couplings between the states.
The nature of the coupling can be different: electronic
states of the same multiplicity and symmetry can be
coupled through the derivative coupling, while spin–orbit
interaction facilitates the transition between states of
different multiplicities. While the nonadiabatic transition
can occur at any nuclear configuration, its probability is
higher if the energy gap between the states is small.

A full description of a nonadiabatic process requires
a calculation of nuclear dynamics that brings the system
from the Franck–Condon region towards the point
where the two states are nearly degenerate, and the
probability of the nonadiabatic transition is larger
(see, for example, [9, 10] and references therein).
To describe the transition, both electronic and nuclear
degrees of freedom should be considered.

Alternatively, one can gain considerable mechanistic
insight and even quantitative information about the*Corresponding author. Email: krylov@usc.edu
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probability of nonadiabatic transitions from the
geometry and energy of the minimum energy point on
the intersection seam (minimum energy crossing point,
MECP, MSX) [11–19]. The MECP can be thought of as
a characteristic point of the process, just like
the transition state in a thermal chemical reaction.
The energy of the MECP can help assess the possibility
of the process, and with the use of the nonadiabatic
transition state theory [20], the rate of the nonadiabatic
process can be estimated. The geometry of MECP
suggests which modes are most efficient in facilitating
the transition [21].
Several methods of finding the MECP have been

proposed over the past years [11–13, 15–19]. The
crossing optimization procedure is very similar to that
of finding the minimum on a PES, with the difference
that constraints must be enforced to ensure the
degeneracy of the states of interest. The algorithm of
locating the MECP on a conical intersection seam is
the same as for crossings of different symmetry or
spin potential surfaces, only the constraints (and the
dimensionality of the seam) are different.
Many methods employ the Lagrange multiplier

technique to constrain the optimization.

Some approaches require the calculation of a nonadia-
batic coupling vector as well, which is rather demanding
and have been implemented only for a handful of
wavefunctions. For example, Ragazos et al. [12] and
Manaa et al. [15] introduced analytical formalisms for
the calculation of the nonadiabatic coupling vector
at the multi-reference self-consistent field (MCSCF) and
the multi-reference configuration interaction (MRCI)
levels of theory and used it for seam minimization.
Levine et al. [19] avoid the laborious evaluation
of the coupling vector by using a tuning parameter.
This implementation works with the time-dependent
density functional theory (TD-DFT) for excited states.

This work reports an implementation of the projected
gradient method [16] within the equation-of-motion
coupled-cluster (EOM-CC) family of methods. The
algorithm does not require the use of the Lagrange
multiplier method and enables the constraints in the
minimization procedure by projecting the energy
gradient. The method was implemented within the
Q-Chem quantum chemistry package [22].

The structure of the paper is as follows. The next
section summarizes the theory of conical intersections
and outlines the algorithm. Then EOM-CC methods are
briefly reviewed. Section 4 presents several test cases and
demonstrates the performance of the algorithm.

2. Theory

2.1. Adiabatic approximation

The full non-relativistic Hamiltonian of a molecular
system H depends explicitly on both nuclear and
electronic coordinates, R and r, respectively:

Hðr,RÞ ¼ TnðRÞ þ TeðrÞ þ VeeðrÞ þ Vneðr,RÞ þ VnnðRÞ
¼ TnðRÞ þHeðr;RÞ, ð1Þ

where Te and Tn are electronic and nuclear kinetic
energy operators, respectively, and Vee, Vne and Vnn

are potential energy operators for electron–electron,
nuclei–electron and nuclei–nuclei interactions. The
electronic Hamiltonian He(r; R) is defined as the full
Hamiltonian minus the nuclear kinetic energy operator
and thus depends explicitly on the electronic
coordinates and only parametrically on the nuclear
coordinates.

Eigenfunctions of the full Hamiltonian satisfy the
Schrödinger equation:

Hðr,RÞCiðr,RÞ ¼ !iCiðr,RÞ: ð2Þ

Figure 1. The potential energy surface slices for the ground
and the first excited states of a substituted ethylene. There is an
energy barrier that prevents the molecule from rotating
freely around the double bond. The top of the barrier on the
ground state PES corresponds to the minimum on the excited
state PES.

2516 E. Epifanovsky and A. I. Krylov
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The solutions of the so-called electronic Schrödinger
equation are defined as follows:

Heðr,RÞ"iðr;RÞ ¼ Ei"iðr;RÞ, ð3Þ

and may be used as a basis to represent the full
wavefunction C(r, R):

Cðr,RÞ ¼
X

j

"jðr;RÞ#jðRÞ, ð4Þ

where #j(R) are expansion coefficients called nuclear
wave functions.
Substituting representation (4) into the full

Schrödinger equation (2) and multiplying by "k from
the left, we arrive at:

X

k0

h"kjHe þ Tnj"k0 ir#k0 ¼ !
X

k00

h"kj"k00 ir#k00 , ð5Þ

where the subscript r denotes integration over the
electronic coordinates. After expanding Tn and using (3):

ð!% Ek % Tn % T00
kkÞ#k ¼

X

k0 6¼k

ðT0
kk0 þ T00

kk0 Þ#k0 , ð6Þ

where

Tn ¼ %
X

A

1

2MA

@2

@R2
A

, ð7Þ

T0
ij ¼ %

X

A

1

MA
"i

@

@RA

!!!!

!!!!"j

" #

r

@

@RA
, ð8Þ

T00
ij ¼ %

X

A

1

2MA
"i

@2

@R2
A

!!!!

!!!!"j

" #

r

: ð9Þ

A solution to the coupled set of equations (6) yields
#j(R), and therefore the solution to the full problem (2).
If the off-diagonal terms on the right-hand side of (6)
vanish, the overall wavefunction becomes just a single
product of the electronic and nuclear parts, and the
nuclear motions on different potential surfaces become
uncoupled. This is the essence of the Born–Oppenheimer
approximation: complete adiabatic separation of the
nuclear and electronic motions (see, for example, [1]).
The approximation therefore requires that the

coupling terms in (6) are small and can be neglected.
Thus, it is important to understand when they may
become significant. Using perturbation theory, one can

rewrite the electronic part of the nonadiabatic coupling
terms in (8) as

"i
@

@R

!!!!

!!!!"j

" #
¼ h"ijð@He=@RÞj"ji

Ej % Ei
, ð10Þ

which suggests that the coupling between two electronic
states becomes large when they are nearly degenerate.
In such situations, the adiabatic approximation breaks
down, and transitions between different electronic states
become possible.

2.2. Crossing location and minimization

Although the set of equations (6) is infinite, the energy
denominator in (10) suggests that the coupling between
only two electronic states needs to be taken into account
in the regions of proximity of their PESs, and the
couplings with other states can be neglected.

The description of conical intersections and the
algorithms for locating MECPs are based on a
first-order perturbative treatment of the electronic
Schrödinger equation in the vicinity of the intersection
[8, 23]. Recently, second-order treatment that accounts
for the curvature of the seam, in addition to the
first-order linear terms, has been reported [24].

At the intersection point R, the electronic
Hamiltonian has the following matrix form in the
so-called ‘crude adiabatic basis’ f"iðr : R0Þg, eigenstates
of the electronic Hamiltonian at a nearby point R0:

HeðRÞ ¼
H11 H12

H12 H22

$ %
, ð11Þ

where HijðRÞ ¼ h"iðr;R0ÞjHeðRÞj"jðr;R0Þir.
After finding the eigenvalues of the Hamiltonian (11),

one can readily write the conditions on the matrix
elements that ensure that the states are degenerate:

H11 %H22 ¼ 0,

H12 ¼ 0:

&
ð12Þ

The above result is the essence of the Neumann–Wigner
theorem, or the noncrossing rule [25], which states that
two conditions have to be imposed on the Hamiltonian
in order for the states to be degenerate and, therefore,
limits the dimensionality of the intersection seam to
N% 2, where N is the number of internal degrees of
freedom. If the coupling term is zero due to the
symmetry restrictions (e.g., between the states of
different spatial symmetry or different multiplicity),
the dimensionality of the seam is N% 1.

Direct location of the minimum point on intersection seams of potential energy surfaces 2517
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By applying degenerate perturbation theory (see, for
example, [23]) to the eigenproblem with Hamiltonian
(11), conditions (12) become

@

@R
½E1ðRÞ % E2ðRÞ'

!!!!
R¼R0

$R ¼ 0,

"1ðr;RÞ
@

@R

!!!!

!!!!"2ðr;RÞ
" #

r

!!!!
R¼R0

$R ¼ 0:

8
>>>><

>>>>:

ð13Þ

By defining the gradient difference vector,

gðR0Þ ¼
@

@R
E1ðRÞjR¼R0

% @

@R
E2ðRÞjR¼R0

, ð14Þ

and the derivative coupling vector,

hðR0Þ ¼ "1ðr;RÞ
@

@R

!!!!

!!!!"2ðr,RÞ
" #

r

!!!!
R¼R0

, ð15Þ

we arrive at

gðR0Þ ( $R ¼ 0,

hðR0Þ ( $R ¼ 0:

&
ð16Þ

Non-zero g and h vectors define a so-called g–h, or
branching, plane [26, 27]. The degeneracy of the states is
preserved in the subspace complement to the g–h plane
and is lifted only along the plane. Thus, MECP can be
found by following the gradient on one of the PES under
constraint (16).
In this work, we implemented a reduced version of the

projected gradient method [16] for locating the mini-
mum energy point on an intersection. The method
requires two vectors, the gradient difference g as defined
in (14), the derivative coupling h as in (15), and the
projection of the gradient on the higher PES onto the
subspace orthogonal to the branching plane:

G2 ¼ P
@

@R
E2; ð17Þ

where P is the projector that performs the required
operation. The gradient difference vector is multiplied
by the energy difference in order to yield zero on
the seam:

G1 ¼
E2 % E1

ðjgj2Þ1=2
g: ð18Þ

The total gradient used in the optimization procedure is
defined as

G ¼ G1 þG2: ð19Þ

Following G1, one arrives at the seam, while G2 is
a gradient along the seam towards MECP.

The advantage of this technique is that it can be
readily used with any existing optimization algorithm.
The disadvantage is that it requires both gradients and
nonadiabatic couplings.

Analytical calculations of the h vector have
been implemented for the MCSCF and MRCI methods
[12, 15]. For EOM-CC, however, only the mathematical
procedure has been developed [28], and no implementa-
tion has been reported so far. In this work we consider
the situations when the nonadiabatic derivative coupling
vector is zero by symmetry, e.g. the spatial parts of
the wavefunctions of the states carry different irreduci-
ble representations or the states are of different
multiplicities. In this case, only analytic gradients are
required [29].

2.3. Equation-of-motion coupled-cluster method

The EOM-CC approach [30–36] allows one to
describe multi-configurational wavefunctions within
a single-reference formalism. In this formalism,
a similarity transformed Hamiltonian is introduced:

!H ¼ e%THeT, ð20Þ

where T is a general excitation operator. Regardless of
the choice of T, the new Hamiltonian !H has the same
spectrum as the original Hamiltonian H. An appropriate
choice of T, however, ensures faster convergence w.r.t.
many-electron basis set.

Target EOM states are obtained by diagonalizing !H
in a basis of excited Slater determinants with respect to
the reference j"0i i.e. the following eigen-problem
is solved:

!Hj"0i ¼ EiRj"0i, ð21Þ

where R is another general excitation operator.
The approach is conceptually similar to configuration

interaction (CI). In the limit of untruncated excitation
operators, the EOM-CC wavefunctions are identical to
those of full CI. However, truncated versions of EOM
have advantages that make them superior to the
corresponding CI methods, because EOM wave-
functions are size-extensive and correlation effects are
‘wrapped-in’ through the similarity transformation.

There are several versions of the EOM method that
differ by the way the general excitation operator
R produces many-electron basis functions from the
reference state. The excitation energy (EOM-EE-CC)
model [34] preserves the number of electrons and

2518 E. Epifanovsky and A. I. Krylov
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forms the excitations by promoting one or more
electrons from the occupied to the virtual orbitals. In
the ionization potential (EOM-IP-CC) version [37–39],
one electron is eliminated from the reference configura-
tion to form the single excitations, and further excita-
tions are produced thereon by electron promotion. The
electron attachment (EOM-EA-CC) method is similar to
EOM-IP-CC, only the single excitations are formed by
adding an electron instead of removing one. Finally, in
the spin-flip (EOM-SF-CC) model [36, 40, 41] the
excited configuration set is formed from a high-spin
reference and the excitation operators R flip the spin of
an electron.
As a multi-state approach, EOM is very attractive for

treating degenerate and nearly degenerate states.
However, complications arise for true conical intersec-
tions due to non-Hermitian nature of the similarity
transformed Hamiltonian [42, 43]. It has been recently
discovered that complex energy values appear around
the crossing points for truncated EOM models, spoiling
the topology of the intersection [42]. A numerical
example demonstrating the problem and a solution
have also been reported [43]. The problem only comes
about when dealing with intersections of PESs of the
same symmetry. Thus, the topology of the intersections
between the EOM states of different spatial or
spin symmetry is described correctly, and no special
treatment is required.

3. Benchmarks and examples

3.1. Computational details

All calculations were performed with the Q-Chem [22]
package. Various versions of the EOM-CC method were
employed for excited states calculations. The 6-31G
basis set [44] was used for Nþ

3 and NO2, and 6-31G)

basis [45]—for the para-benzyne diradical. To validate
the code, MECPs were located by generating dense
numerical grids for Nþ

3 and NO2. Then the algorithm
was tested by setting the calculations with different
starting geometries and employing different tolerance
criteria.

3.2. Cyclic trinitrogen cation

The cyclic trinitrogen cation is a closed-shell system
with a manifold of low-lying near-degenerate excited
states [46, 47].
The equilibrium ground state geometry of Nþ

3 is an
equilateral triangle (D3h), whereas low-lying excited
states undergo Jahn–Teller distortions to C2v. The C2v

point group symmetry will be used to label the
excited states.

Both HOMO and LUMO in the ground state orbital
picture of the cation are doubly degenerate. Therefore,
four near-degenerate electronic states are derived upon
the excitations from the highest occupied lone pair
orbitals to the lowest unoccupied %) orbitals. Among
those, the 21A2 and 11B1 adiabatic states have PESs
that form two intersection seams. One of the seams lies
along the nuclear space coordinate that preserves the
D3h point group symmetry (this is the Jahn–Teller seam),
and the other one is found in the subspace where the
molecule is distorted from the equilateral triangular
geometry to C2v. There are three symmetry-identical
MECP of the C2v type.

This interesting feature—four very closely located
conical intersections—was characterized by Dillon
and Yarkony [47] and makes the intersection to
appear glancing rather than conical [46].

As in the recent study [46], we employed EOM-
EE-CCSD to describe the excited states of Nþ

3 . As long
as the molecule preserves the C2v symmetry, the
wavefunctions of the electronic states of interest
belong to different irreps, A2 and B1, and therefore
the derivative coupling matrix element vanishes. The
intersection seam between the states is two-dimensional.

To validate the algorithm, the 21A2/1
1B1 crossing

seams were first scanned in order to find the minimum
energy points. The locations of these points, as well as
the points of triple degeneracy, are listed in table 1.

To assess the performance of the algorithm, we
attempted various geometries as the starting points
for the optimization procedure. Usually the algorithm
locates the minimum energy points on the 21A2/1

1B1

seams in less than 20 iterations (table 2). Just like the
local minimum on a global PES found with an
optimization algorithm depending on the starting
point, the seam located with the projected gradient
method depends on the choice of the initial molecular
geometry.

Another interesting feature of the manifold of the
electronic states in Nþ

3 is additional accidental degen-
eracies. The 11A2 and 21A2 are degenerate at a point in
the internal coordinate space which happens to corre-
spond to the molecule having the D3h point group
symmetry. Since 21A2 and 11B1 are rigorously degen-
erate in D3h, the point becomes a point of a triple 11A2/
21A2/1

1B1 intersection. The 11B1 and 21B1 electronic
states have a point of degeneracy as well, which is
therefore the point of a triple 21A2/1

1B1/2
1B1

intersection.
The 11A2/2

1A2/1
1B1 and 21A2/1

1B1/2
1B1 triple

intersections were located at D3h geometries
with the N–N distance R(NN)¼ 1.6671 Å and

Direct location of the minimum point on intersection seams of potential energy surfaces 2519
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R(NN)¼ 1.6041 Å, respectively. Scans of the PESs
around the points of intersections are shown in figure 2.
Note that the triple intersections are found at the D3h

symmetry and in fact are crossings of PESs belonging to
different irreducible representations, even though it is

not immediately clear from the C2v notation. Therefore,
the problem with complex energy values [43] does not
arise.

3.3. Nitrogen dioxide

The PESs of the ground and first excited states of the
NO2 molecule, X2A1 and A2B2, form an intersection
[48]. Crossing points have been located for different
N–O bond distances with the O–N–O angle between
107* and 108* [49].

When the molecule is constrained to the C2v point
group symmetry, the spacial parts of the wavefunctions
of the states belong to different irreps, A1 and B2,
and the derivative coupling matrix element between
them vanishes.

Table 2. Results of energy minimization of the 21A2/1
1B1

intersection seam in Nþ
3 calculated by EOM-CCSD/6-31G.

All bond lengths are given in angstroms, all angles are given
in degrees.

Starting geometry Final geometry

R(NN) &(NNN) Iterations R(NN) &(NNN)

Tolerancea "g¼ 3+ 10%4 (Q-Chem default)
1.2000 60.00 6 1.4553 60.00
1.4200 60.00 4 1.4555 60.00
1.4600 70.00 16 1.4556 59.99
1.5400 50.00 5 1.4557 60.00
1.6000 90.00 8 1.4475 60.79

Tolerance "g¼ 3+ 10%5

1.2000 60.00 7 1.4556 60.00
1.4200 60.00 5 1.4556 60.00
1.4600 70.00 16 1.4556 59.99
1.5400 50.00 6 1.4556 60.00
1.6000 90.00 9 1.4476 60.78

Tolerance "g¼ 1+ 10%5

1.2000 60.00 7 1.4556 60.00b

1.4200 60.00 5 1.4556 60.00
1.4600 70.00 17 1.4556 60.00
1.5400 50.00 6 1.4556 60.00
1.6000 90.00 9 1.4476 60.78c

aTolerance on the maximum gradient component. The
optimization procedure converges if this and one of the
two criteria—energy change "E¼ 10%6 au and maximum
displacement "q¼ 1.2+ 10%3 Å—are satisfied.
bNuclear repulsion energy Enr¼ 53.441 794 au, total energy
Etot¼%162.822 635 au.
cNuclear repulsion energy Enr¼ 53.528 406 au, total energy
Etot¼%162.821 900 au.

Table 1. Geometries and total energies of the intersection seam minima and points of triple
degeneracy in Nþ

3 calculated by EOM-CCSD/6-31G. All bond lengths are given in angstroms,
all angles are given in degrees, all energies are given in au.

R(NN) &(NNN) E(11A2) E (21A2) E (11B1) E(21B1)

D3h seam minimum
1.4556 60.00 %162.836 070 %162.822 635 %162.822 635 %162.816 033

C2v seam minimum
1.4476 60.78 %162.837 652 %162.821 903 %162.821 903 %162.815 864

Points of triple degeneracy
1.6671 60.00 %162.795 662 %162.795 661 %162.799 368 %162.795 663
1.6041 60.00 %162.812 016 %162.807 857 %162.807 860 %162.807 858

Figure 2. D3h-constrained scans of adiabatic PESs of Nþ
3

around the points of intersections calculated by EOM-CCSD/
6-31G.

2520 E. Epifanovsky and A. I. Krylov
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If the symmetry is lowered further to the Cs point
group symmetry, and the N–O bond lengths are allowed
to vary independently, both the ground state and first
excited state wavefunctions become of the A0 symmetry.
The derivative coupling matrix element between the
two states is no longer zero, and the intersection
becomes truly conical.
The calculations were performed using the EOM-

IP-CCSD method. The closed-shell CCSD wavefunction
for NO%

2 was used as the reference for the EOM-IP
calculations.
To locate and minimize the seam numerically,

the two surfaces were first scanned. The N–O distance
was varied from 1.20 to 1.40 Å, and at each point the
O–N–O angle was varied from 90* to 130*, as shown in
figure 3. These results are summarized in table 3.
The minimum of the seam was located at
R(NO)¼ 1.3045 Å, &(ONO)¼ 106.75*.
Various starting geometries were used in order to test

the performance of the algorithm. Table 4 contains
the initial points attempted and the results obtained.

3.4. Para-Benzyne diradical

The para-benzyne diradical has the 1Ag ground state and
a low-lying 3B1u triplet excited state [50–55]. In both
states, the equilibrium structure is of the D2h point group
symmetry.
The ground singlet state and the excited triplet state

are derived from distributions of two electrons over the

lower b1u and the higher ag frontier molecular orbitals.
These states can be accurately described by the
SF method [41] as spin-flipping excitations form the
high-spin triplet reference state, as shown in figure 4.

The equilibrium geometries of the para-benzyne
diradical were calculated at the EOM-SF-CCSD/
6-31G) level. The geometries agree with the SF-DFT
ones from [53], as shown in table 5.

Table 4. Results of C2v-constrained energy minimization of
the X2A1/A

2B2 intersection seam in NO2 calculated by EOM-
IP-CCSD/6-31G. All bond lengths are given in angstroms, all

angles are given in degrees.

Starting geometry Final geometry

R(NN) &(ONO) Iterations R(NO) &(ONO)

Tolerancea "g¼ 3+ 10%4 (Q-Chem default)
1.2000 100.00 13 1.3047 106.76
1.3000 90.00 14 1.3045 106.78
1.3000 120.00 15 1.3047 106.75

Tolerance "g¼ 3+ 10%5

1.2000 100.00 15 1.3046 106.74
1.3000 90.00 18 1.3046 106.75
1.3000 120.00 17 1.3046 106.75

Tolerance "g¼ 1+ 10%5

1.2000 100.00 17 1.3046 106.75b

1.3000 90.00 19 1.3046 106.75
1.3000 120.00 18 1.3046 106.75

aTolerance on the maximum gradient component. The
optimization procedure converges if this and one of the two
criteria—energy change "E¼ 10%6 au and maximum displace-
ment "q¼ 1.2+ 10%3 Å—are satisfied.
bNuclear repulsion energy Enr¼ 61.603 681 au, total energy
Etot¼%204.250 712 au.

Figure 3. The seam of the X2A1/A
2B2 intersection in nitrogen

dioxide. At every N–O distance, the PESs of both states were
scanned to find the O–N–O angle at which the states are
degenerate.

Table 3. Points of the C2v constrained seam of
the X2A1/A

2B2 intersection in nitrogen dioxide.
All bond lengths are given in angstroms, all angles
are given in degrees, all energies are given in au.

R(NO) &(ONO) E(X2A1)

1.2000 106.027 %204.223 693
1.2200 106.125 %204.233 934
1.2400 106.241 %204.241 419
1.2600 106.376 %204.246 503
1.2800 106.531 %204.249 495
1.3000 106.706 %204.250 673
1.3045 106.748 %204.250 713
1.3200 106.901 %204.250 279
1.3400 107.117 %204.248 528
1.3600 107.353 %204.245 608
1.3800 107.611 %204.241 686
1.4000 107.889 %204.236 910

Direct location of the minimum point on intersection seams of potential energy surfaces 2521
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Since the adiabatic singlet triplet gap is only about
0.03 eV, one could anticipate a low-energy 1Ag/

3B1u

intersection. The ground state equilibrium geometry
found in [53] was used as the starting point for locating
the minimum of the crossing seam. The convergence was
achieved in about 50 iterations. The progress of the
intersection optimization is shown in figure 6.
The MECP was located 0.65 eV above the ground

state equilibrium energy as shown in the energy diagram
in figure 7. The nuclear configuration at this point is
significantly distorted compared to the ground state
geometry. Note that although this distortion increases
the splitting between the frontier MOs due to increased
through-space interaction between the radical centres,
it stabilizes the ag orbital, due to the favourable
through-bond interactions [57].

4. Discussion: Performance of the algorithm and
details of implementation

Our implementation of the projected gradient algorithm
employs the minimization technique used in Q-Chem:
the Newton–Raphson method in conjunction with the
eigenvalue following algorithm [58]. An approximate

guess Hessian matrix used for the optimization is
updated using the BFGS formula. We modified the
EOM-CCSD/CCSD code [29] to allow simultaneous
analytical calculation of the gradients for two states.
The two components of the gradient (19) used in the
minimization procedure are evaluated as given by (17)
and (18).

We found that the convergence of the algorithm
strongly depends on the relative absolute values of the
two gradient components. If one of the components has
a much greater absolute value than the other, after the
step is taken, the smaller gradient changes its value
significantly at the new point. Often, this leads to surges
and oscillations of the energy during the minimization
that spoils the convergence. For example, the optimiza-
tion of the 1Ag/

3B1u intersection in the para-benzyne
diradical fails if the G1 and G2 vectors are taken with the
same weights, as in (19). We employed a modified
version of the algorithm when the two components of
the total gradient can be scaled with coefficients
specified by the user. When the G2 vector is scaled
such that its absolute value is approximately the same as
that of the G1 vector, the procedure converges as shown
in figure 6.

Table 5. Equilibrium geometries and the MECP of the 1Ag and
3B1u electronic states calculated by EOM-SF-CCSD/6-31G).

Geometrical parameters are defined in figure 5. All bond lengths are given in angstroms, all angles are given in degrees.

Method R(CC1) R(CC2) R(CH) &(CCC1) &(CCC2) &(CCH)

1Ag ground state
SF-DFT (50,50)/6-31G)a 1.419 1.358 1.077 124.8 117.6 123.6
CASSCF(8,8)/6-31G)b 1.411 1.383 124.0 118.0
EOM-SF-CCSD/6-31G)c 1.424 1.374 1.087 124.4 117.8 123.0

3B1u excited state
SF-DFT (50,50)/6-31G) 1.398 1.370 1.079 126.8 116.6 122.3
CASSCF(8,8)/6-31G) 1.403 1.387 125.3 117.4
EOM-SF-CCSD/6-31G)d 1.406 1.383 1.088 126.2 116.9 121.9

1Ag/
3B1u intersection

EOM-SF-CCSD/6-31G)e 1.388 1.366 1.101 137.4 111.3 124.0

aReference [53]. bReference [56]. cNuclear repulsion energy Enr¼ 185.259 520 au., total energy Etot¼%230.178 701 au. dNuclear
repulsion energy Enr¼ 185.220 983 au, total energy Etot¼%230.171 962 au. eNuclear repulsion energy Enr¼ 187.472 024 au, total
energy Etot¼%230.154 762 au.

Figure 4. The singlet and the Ms¼ 0 triplet target states of
the para-benzyne diradical derived from the high-spin triplet
reference by spin-flip.

Figure 5. Geometrical parameters used to describe the
para-benzyne diradical in table 5.
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In this context, the Lagrange multiplier algorithm (e.g.
[14]) seems to be more robust, as it adjusts the coefficients
automatically during the optimization procedure, thus
insuring proper treatment of the problem. This, however,
should not be considered a serious drawback of the
projected gradient algorithm as with user-controlled
coefficients comparable performance is achieved.
The scaling problem is related to the quality of the

Hessian. In the straightforward implementation the
approximate Hessian for the upper PES is used, which
is not the Hessian of the function which is being
optimized. The issue could be rectified by improving
the Hessian update procedure. Alternatively, scaling
coefficients can be used in order to improve conver-
gence. By default, the components of the gradient are

not scaled. However, the tests showed that scaling the
G2 vector to one-tenth of its original absolute value
significantly improves the convergence.

Yarkony [59] and Chachiyo and Rodriguez [17]
addressed this problem by modifying the algorithms as
follows. Rather than optimizing the energy difference,
they minimize the average energy between the states,
which demonstrated better performance.

5. Conclusions

We implemented a reduced variant of the projected
gradient method [16] within the equation-of-motion
coupled-cluster (EOM-CC) family of methods in the

Figure 7. Relative energies of the 1Ag and 3B1u states of para-benzyne diradical at their equilibrium structures and MECP.
Both at the singlet and triplet equilibrium geometry, the singlet is below the triplet. The two states intersect 0.65 eV above the ground
state minimum.

Figure 6. Convergence of the 1Ag/3B1u intersection optimization in the para-benzyne diradical by EOM-SF-CCSD/6-31G).
In the upper part, the relative energies of both states are plotted for each iteration. The corresponding energy gaps are shown in the
lower part. Convergence is achieved in about 50 iterations.
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Q-Chem quantum chemistry package [22]. The
algorithm employs analytic gradients [29] and assumes
zero derivative couplings. Thus, it is applicable for
minimizing the crossing seams between states of
different symmetry and/or multiplicity. The method
was applied to locate the MECPs between: (i) the excited
states of Nþ

3 described by EOM-EE-CCSD; (ii) the
two lowest states of NO2 described by EOM-IP-CCSD;
and (iii) the singlet and triplet states of the para-benzyne
diradical described by EOM-SF-CCSD.
The benchmarks demonstrated that the convergence

depends on the quality of the initial guess, as well as
local steepness/curvature of the seam, e.g. the conver-
gence is poor when the magnitude of the two gradient
components is very different. Scaling of the two
components of the gradient was shown to improve the
convergence.
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