From orbitals to observables and back

Orbital concepts are of central importance in quantum chemistry. Molecular orbital theory helps to interpret molecular properties; it also provides a link to experimental observables (e.g., photoionization cross sections and angular distributions. We are developing rigorous extensions of molecular orbital concepts into the domain of correlated many-body methods. The key concepts include reduced state and transition density matrices, natural transition orbitals, and Dyson orbitals. We also develop tools connecting these reduced quantities to spectroscopic observables.


Related Publications

259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions: Theory and implementation
J. Chem. Phys. , submitted (2020) Abstract  Preprint

248. A.I. Krylov
From orbitals to observables and back
J. Chem. Phys.  153, 080901 (2020) Abstract  PDF 

244. S. Gozem, R. Seidel, U. Hergenhahn, E. Lugovoy, B. Abel, B. Winter, A. I. Krylov, and S. E. Bradforth
Probing the electronic structure of bulk water at the molecular lengthscale with angle-resolved photoelectron spectroscopy
J. Phys. Chem. Lett.  11, 5162 – 5170 (2020) Abstract  PDF Supporting info

232. M. L. Vidal, A. I. Krylov, and S. Coriani
Correction to "Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of ground and excited states"
Phys. Chem. Chem. Phys.  22, 3744 – 3747 (2020) Abstract  PDF 

231. M. L. Vidal, A. I. Krylov, and S. Coriani
Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of ground and excited states
Phys. Chem. Chem. Phys.  22, 2693 – 2703 (2020) Abstract  PDF Supporting info

226. P. Pokhilko and A. I. Krylov
Quantitative El-Sayed rules for many-body wavefunctions from spinless transition density matrices
J. Phys. Chem. Lett.  10, 4857 – 4862 (2019) Abstract  PDF Supporting info

210. W. Skomorowski and A. I. Krylov
Real and imaginary excitons: Making sense of resonance wavefunctions by using reduced state and transition density matrices
J. Phys. Chem. Lett.  9, 4101 (2018) Abstract  PDF Supporting info

198. S. Mewes, F. Plasser, A. I. Krylov, and A. Dreuw
Benchmarking excited-state calculations using exciton properties
J. Chem. Theo. Comp. 14, 710 – 725 (2018) Abstract  PDF 

194. N. Orms, D. R. Rehn, A. Dreuw, and A. I. Krylov
Characterizing bonding patterns in diradicals and triradicals by density-based wave function analysis: A uniform approach
J. Chem. Theo. Comp. 14, 638 – 648 (2018) Abstract  PDF 

190. K.D. Nanda and A.I. Krylov
Visualizing the contributions of virtual states to two-photon absorption cross-sections by natural transition orbitals of response transition density matrices
J. Phys. Chem. Lett. 8, 3256 – 3265 (2017) Abstract  PDF Supporting info

179. T.-C. Jagau, K.B. Bravaya, and A.I. Krylov
Extending quantum chemistry of bound states to electronic resonances
Ann. Rev. Phys. Chem. 68, 525 – 553 (2017) Abstract  Full text 

168. T.-C. Jagau and A.I. Krylov
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
J. Chem. Phys. 144, 054113 (2016) Abstract  PDF Supporting info

163. S. Gozem, A.O. Gunina, T. Ichino, D.L. Osborn, J.F. Stanton, and A.I. Krylov
Photoelectron wave function in photoionization: Plane wave or Coulomb wave?
J. Phys. Chem. Lett. 6, 4532 – 4540 (2015) Abstract  PDF Supporting info

85. C.M. Oana and A.I. Krylov
Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals
J. Chem. Phys. 131, 124114 (2009) Abstract  PDF 

59. C.M. Oana and A.I. Krylov
Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples
J. Chem. Phys. 127, 234106 (2007) Abstract  PDF (873 kB)