Quantum information science

We are using quantum-chemistry methods to investigate molecular building blocks for quantum information storage and quantum computing.

Related Publications

307. N. Maskara, S. Ostermann, J. Shee, M. Kalinowski, A. McClain Gomez, R.A. Bravo, D.S. Wang, A.I. Krylov, N.Y. Yao, M. Head-Gordon, M.D. Lukin, and S.F. Yelin
Programmable simulations of molecules and materials with reconfigurable quantum processors
, submitted (2023) Abstract 

302. S. Kaehler, A. Cebreiro, P. Pokhilko, D. Casanova, and A.I. Krylov
State-interaction approach for evaluating g-tensors within EOM-CC and RAS-CI frameworks: Theory and benchmarks
J. Phys. Chem. A  127, 8459 – 8472 (2023) Abstract  PDF Supporting info

297. Y. Kim and A.I. Krylov
Two algorithms for excited-states quantum solvers: Theory and application to EOM-UCCSD
J. Phys. Chem. A  127, 6552 – 6566 (2023) Abstract  PDF 

290. M. Alessio, S. Kotaru, G. Giudetti, and A.I. Krylov
Origin of magnetic anisotropy in nickelocene molecular magnet and resilience of its magnetic behavior
J. Phys. Chem. C  127, 3647 – 3659 (2023) Abstract  PDF Supporting info

286. P. Wojcik, E.R. Hudson, and A.I. Krylov
On the prospects of optical cycling in diatomic cations: Effects of transition metals, spin-orbit couplings, and multiple bonds
Mol. Phys.  121, e2107582 (2023) Abstract  PDF 

285. S. Kotaru, P. Pokhilko, and A.I. Krylov
Spin-orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory: Implementation and benchmark calculations
J. Chem. Phys.  157, 224110 (2022) Abstract  PDF Supporting info

267. M. Alessio and A.I. Krylov
Equation-of-motion coupled-cluster protocol for calculating magnetic properties: Theory and applications to single-molecule magnets
J. Chem. Theo. Comp.  17, 4225 – 4241 (2021) Abstract  PDF Supporting info

265. A.I. Krylov, J. Doyle, and K.-K. Ni
Quantum computing and quantum information storage: An introduction
Phys. Chem. Chem. Phys.  23, 6341 – 6343 (2021) Abstract  PDF 

261. P. Pokhillko, D. Bezrukov, and A.I. Krylov
Is solid copper oxalate a spin chain or a mixture of entangled spin pairs?
J. Phys. Chem. C 125, 7502 – 7510 (2021) Abstract  PDF Supporting info

250. M.V. Ivanov, F.H. Bangerter, P. Wojcik, and A.I. Krylov
Correction to: "Towards ultracold organic chemistry: Prospects of laser cooling large organic molecules"
J. Phys. Chem. Lett.  11, 9239 (2020) Abstract  PDF 

249. M.V. Ivanov, F.H. Bangerter, P. Wojcik, and A.I. Krylov
Towards ultracold organic chemistry: Prospects of laser cooling large organic molecules
J. Phys. Chem. Lett.  11, 6670 – 6676 (2020) Abstract  PDF Supporting info

247. M. Ivanov, T.-C. Jagau, G.-Z. Zhu, E. R. Hudson, and A.I. Krylov
In search of molecular ions for optical cycling: A difficult road
Phys. Chem. Chem. Phys.  22, 17075 – 17090 (2020) Abstract  PDF Supporting info

242. M. Ivanov, A.I. Krylov, and S. Zilberg
Long-range N-N bonding by Rydberg electrons
J. Phys. Chem. Lett.  11, 2284 – 2290 (2020) Abstract  PDF Supporting info

241. M. Ivanov, S. Gulania, and A. I. Krylov
Two cycling centers in one molecule: Communication by through-bond interactions and entanglement of the unpaired electrons
J. Phys. Chem. Lett.  11, 1297 – 1304 (2020) Abstract  PDF Supporting info

228. M. V. Ivanov, F. H. Bangerter, and A. I. Krylov
Towards a rational design of laser-coolable molecules: Insights from equation-of-motion coupled-cluster calculations
Phys. Chem. Chem. Phys.  21, 19447 – 19457 (2019) Abstract  PDF Supporting info

197. N. Orms and A. I. Krylov
Singlet-triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory
Phys. Chem. Chem. Phys. 20, 13095 – 13662 (2018) Abstract  PDF Supporting info