Advances in methods and algorithms in a modern quantum chemistry
program package
Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neil, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Bird, H. Daschel, R. J. Doerksen, A. Drew, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. S. Kedziora, R. Z. Khalliulin, P. Klunziger, A. M. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Herhe, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon
Phys. Chem. Chem. Phys. 8, 3172 – 3191
(2006)
Advances in theory and algorithms for electronic structure calculations
must be incorporated into program packages to enable them to become
routinely used by the broader chemical community. This work reviews
advances made over the past five years or so that constitute the major
improvements contained in a new release of the Q-Chem quantum chemistry
package, together with illustrative timings and applications. Specific
developments discussed include fast methods for density functional
theory calculations, linear scaling evaluation of energies, NMR chemical
shifts and electric properties, fast auxiliary basis function methods
for correlated energies and gradients, equation-of-motion coupled cluster
methods for ground and excited states, geminal wavefunctions, embedding
methods and techniques for exploring potential energy surfaces.
Download this paper (PDF, 863 kB)
Related Research
EOM-CC methods