From orbitals to observables and back
Orbital concepts are of central importance in quantum chemistry. Molecular orbital theory
helps to interpret molecular properties; it also provides a link to experimental observables
(e.g., photoionization cross sections and angular distributions. We are developing
rigorous extensions of molecular orbital concepts into the domain of correlated many-body
methods. The key concepts include reduced state and transition
density matrices, natural transition orbitals, and Dyson orbitals.
We also develop tools connecting these reduced quantities to spectroscopic observables.
Related Publications
302. N.K. Jayadev, W. Skomorowski, and A.I. Krylov
Molecular-orbital framework of two-electron processes: Application to Auger and intermolecular Coulomb decay
J. Phys. Chem. Lett.
14, 8612 – 8619
(2023)
Abstract
PDF Supporting info
283. B. Ru, C.A. Hart, R. Mabbs, S. Gozem, A.I. Krylov, and A. Sanov
Dipole effects in the photoelectron angular distributions of the sulfur monoxide anion
Phys. Chem. Chem. Phys.
24, 23367 – 23381
(2022)
Abstract
PDF
277. F. Plasser, A.I. Krylov, and A. Dreuw
libwfa: Wavefunction analysis tools for excited and open-shell electronic states
WIRES Comp. Mol. Sci.
12, e1595
(2022)
Abstract
PDF
274. S. Gozem and A. I. Krylov
The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling
WIRES Comp. Mol. Sci.
12, e1546
(2022)
Abstract
PDF
272. C. Hart, J. Lyle, J. Spellberg, A.I. Krylov, and R. Mabbs
On the role of the electron-dipole interaction in photodetachment angular distributions
J. Phys. Chem. Lett.
12, 10086 – 10092
(2021)
Abstract
PDF Supporting info
264. K. Nanda and A.I. Krylov
The orbital picture of the first dipole hyperpolarizability from many-body response theory
J. Chem. Phys.
154, 184109
(2021)
Abstract
PDF Supporting info
259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. I. Theory and implementation
J. Chem. Phys.
154, 084124
(2021)
Abstract
PDF
248. A.I. Krylov
From orbitals to observables and back
J. Chem. Phys.
153, 080901
(2020)
Abstract
Full text
244. S. Gozem, R. Seidel, U. Hergenhahn, E. Lugovoy, B. Abel, B. Winter, A. I. Krylov, and S. E. Bradforth
Probing the electronic structure of bulk water at the molecular lengthscale with angle-resolved photoelectron spectroscopy
J. Phys. Chem. Lett.
11, 5162 – 5170
(2020)
Abstract
PDF Supporting info
232. M. L. Vidal, A. I. Krylov, and S. Coriani
Correction to "Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of
ground and excited states"
Phys. Chem. Chem. Phys.
22, 3744 – 3747
(2020)
Abstract
PDF
231. M. L. Vidal, A. I. Krylov, and S. Coriani
Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of
ground and excited states
Phys. Chem. Chem. Phys.
22, 2693 – 2703
(2020)
Abstract
PDF Supporting info
226. P. Pokhilko and A. I. Krylov
Quantitative El-Sayed rules for many-body wavefunctions from spinless transition density matrices
J. Phys. Chem. Lett.
10, 4857 – 4862
(2019)
Abstract
PDF Supporting info
210. W. Skomorowski and A. I. Krylov
Real and imaginary excitons: Making sense of resonance wavefunctions by
using reduced state and transition density matrices
J. Phys. Chem. Lett.
9, 4101
(2018)
Abstract
PDF Supporting info
198. S. Mewes, F. Plasser, A. I. Krylov, and A. Dreuw
Benchmarking excited-state calculations using exciton properties
J. Chem. Theo. Comp. 14, 710 – 725
(2018)
Abstract
PDF
194. N. Orms, D. R. Rehn, A. Dreuw, and A. I. Krylov
Characterizing bonding patterns in diradicals and triradicals by
density-based wave function analysis: A uniform approach
J. Chem. Theo. Comp. 14, 638 – 648
(2018)
Abstract
PDF
190. K.D. Nanda and A.I. Krylov
Visualizing the contributions of virtual states to two-photon
absorption cross-sections by natural
transition orbitals of response transition density matrices
J. Phys. Chem. Lett. 8, 3256 – 3265
(2017)
Abstract
PDF Supporting info
179. T.-C. Jagau, K.B. Bravaya, and A.I. Krylov
Extending quantum chemistry of bound states to electronic resonances
Ann. Rev. Phys. Chem. 68, 525 – 553
(2017)
Abstract
PDF
168. T.-C. Jagau and A.I. Krylov
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
J. Chem. Phys. 144, 054113
(2016)
Abstract
PDF Supporting info
163. S. Gozem, A.O. Gunina, T. Ichino, D.L. Osborn, J.F. Stanton, and A.I. Krylov
Photoelectron wave function in photoionization: Plane wave or Coulomb wave?
J. Phys. Chem. Lett. 6, 4532 – 4540
(2015)
Abstract
PDF Supporting info
85. C.M. Oana and A.I. Krylov
Cross sections and photoelectron angular distributions
in photodetachment from negative ions using
equation-of-motion coupled-cluster Dyson orbitals
J. Chem. Phys. 131, 124114
(2009)
Abstract
PDF
59. C.M. Oana and A.I. Krylov
Dyson orbitals for ionization from the ground and electronically
excited states within equation-of-motion coupled-cluster formalism:
Theory, implementation, and examples
J. Chem. Phys. 127, 234106
(2007)
Abstract
PDF (873 kB)