EOM-CC methods
Equation-of-motion (EOM) is a versatile electronic structure approach
that allows one to describe many multi-configurational wave functions
within a single-reference formalism. For example, EOM for excitation
energies (EOM-EE) method accurately describes electronically excited
states, while ionized/electron attached EOM models (EOM-IP/EA) can
tackle doublet radicals, including notorious cases of symmetry breaking.
We have extended EOM approach to diradicals, triradicals, and
bond-breaking.
In our approach, which is called the Spin-Flip (SF method) problematic
low-spin states are treated as spin-flipping excitations from the
high-spin reference state.
Equation-of-motion excitation energies (EOM-EE) determinants
Ψ(Ms = 0) = R(Ms = 0)Ψ0(Ms = 0)
Equation-of-motion ionization potential (EOM-IP) determinants
Ψ(N) = R(-1)Ψ0(N + 1)
Equation-of-motion electron attachment (EOM-EA) determinants
Ψ(N) = R(+1)Ψ0(N - 1)
Equation-of-motion spin-flip (EOM-SF) determinants
Ψ(Ms = 0) = R(Ms = -1)Ψ0(Ms = 1)
Diradicals and the spin-flip method
From the electronic structure point of view, diradicals are molecules
in which two electrons are distributed in two nearly degenerate molecular
orbitals. For such a system, six Slater determinants can be generated as
in the picture:
Determinants (a) – (d) have zero projection of the total
spin (Ms = 0). High-spin determinants (e) and (f)
correspond to Ms = +1 and
Ms = -1 configurations, respectively. From these
determinants, three singlet and three triplet wave functions can be
constructed as follows (coefficient λ is large when the energy gap
between orbitals is small):
Singlets
Ψs1 = (a) - λ(b)
Ψs2 = λ(a) - (b)
Ψs3 = (c) - (d)
|
Triplets
Ψt1 = (c) + (d)
Ψt2 = (e)
Ψt3 = (f)
|
All of the above singlet wave functions are two-determinantal. The
Ms = 0 component of the triplet is also
two-determinantal, however, the high-spin triplets
(Ms = 1/Ms = -1) are
single-determinantal. Note that all the Ms = 0
determinants are formally single electron excitations with a spin-flip
from the Ms = 1/Ms = -1
configurations. Therefore, the Ms = 0 states
can be described as spin-flipping excited states from the high-spin
|α α> triplet reference. This is the essence
of the Spin-Flip (SF) method. The SF method describes ground and excited
states of diradicals (or potential energy surfaces along bond-breaking
coordinate) as spin-flipping, e. g., α→β, excitations
from a high spin |α α> triplet reference.
Similarly, electronic states of triradicals are described as spin-flipping
excitations from the high-spin component of the quartet state. The SF
approach allows one to describe multi-configurational wave functions in
a size-consistent fashion and within a single-reference formalism thus
resulting in efficient, accurate, and robust computational scheme.
Modeling of charge transfer reactions by EOM methods
Electron transfer reactions are common in biological and synthetic
polymers. The rates of these processes can be related to the coupling
between the diabatic electronic states that correspond to reactant and
product states. Calculations on these systems are difficult due
to the propensity of Hartree-Fock solutions to overlocalize charge and
break symmetry.
Positively charged ethylene dimer is an often-studied prototype
system for perpendicular hole conductance. The reaction coordinate
slowly interpolates between neutral and cationic geometries of
monomers in the dimer.
Electron hopping in ethylene dimer
The EOM-CCSD method relies on the unstable Hartree-Fock solution
for the open-shell doublet system, which is the positively charged
dimer. It predicts excessive charge localization and a cusp on the
potential energy surface. In contrast, EOM-IP-CCSD predicts a smooth
charge flow along the reaction coordinate as well as smooth PESs.
This method employs stable reference wave function of the neutral,
which is a closed-shell singlet system, and describes both
charge-transfer states in a balanced fashion.
Electron hopping in ethylene dimer by EOM methods
Current research
Current research includes development of reduced scaling methods, efficient tensor algorithms,
as well as novel EOM models to deal with other types of open shell systems and metastable electronic states
(resonances). In addition, we are developing tools for describing non-linear response properties.
Related Publications
316. N.K. Jayadev, T.-C. Jagau, and A.I. Krylov
Resonant Auger decay in benzene
J. Phys. Chem. A
, in press
(2024)
Abstract
Preprint
309. O. Haggag, R. Baer, S. Ruhman, and A.I. Krylov
Revisiting the benzene excimer using [2,2] paracyclophane model system: Experiment and theory
J. Chem. Phys.
160, 124111
(2024)
Abstract
PDF Supporting info
305. R. Sarangi, K. Nanda, and A.I. Krylov
Two- and one-photon absorption spectra of aqueous thiocyanate
anion highlight the role of symmetry in condensed phase
J. Comp. Chem.
45, 878 – 885
(2024)
Abstract
PDF
304. S. Dey, S. D. Folkestad, A. Paul, H. Koch, and A.I. Krylov
Core-ionization spectrum of liquid water
Phys. Chem. Chem. Phys.
26, 1845 – 1859
(2024)
Abstract
PDF Supporting info
302. N.K. Jayadev, W. Skomorowski, and A.I. Krylov
Molecular-orbital framework of two-electron processes: Application to Auger and intermolecular Coulomb decay
J. Phys. Chem. Lett.
14, 8612 – 8619
(2023)
Abstract
PDF Supporting info
301. S. Kaehler, A. Cebreiro, P. Pokhilko, D. Casanova, and A.I. Krylov
State-interaction approach for evaluating g-tensors within EOM-CC and RAS-CI frameworks: Theory and benchmarks
J. Phys. Chem. A
127, 8459 – 8472
(2023)
Abstract
PDF Supporting info
300. K. Chatterjee, Z. Koczor-Benda, X. Feng, A.I. Krylov, and T.-C. Jagau
Analytic evaluation of non-adiabatic couplings within the complex absorbing potential equation-of-motion coupled-cluster method
J. Chem. Theo. Comp.
19, 5281 – 5834
(2023)
Abstract
PDF
297. Y. Kim and A.I. Krylov
Two algorithms for excited-states quantum solvers:
Theory and application to EOM-UCCSD
J. Phys. Chem. A
127, 6552 – 6566
(2023)
Abstract
PDF
294. N.K. Jayadev, A. Ferino-Perez, F. Matz, A.I. Krylov, and T.-C. Jagau
The Auger spectrum of benzene
J. Chem. Phys.
158, 064109
(2023)
Abstract
PDF
292. K.D. Nanda, S. Gulania, and A.I. Krylov
Theory, implementation, and disappointing results for two-photon absorption cross sections within the doubly electron-attached equation-of-motion coupled-cluster framework
J. Chem. Phys.
158, 054102
(2023)
Abstract
PDF
285. S. Kotaru, P. Pokhilko, and A.I. Krylov
Spin-orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory:
Implementation and benchmark calculations
J. Chem. Phys.
157, 224110
(2022)
Abstract
PDF Supporting info
284. M. Mukherjee, R. Kumar T. P., M. Rankovic, P. Nag, J. Fedor, and A.I. Krylov
Spectroscopic signatures of states in the continuum characterized by a joint
experimental and theoretical study of pyrrole
J. Chem. Phys.
157, 204305
(2022)
Abstract
PDF Supporting info
283. B. Ru, C.A. Hart, R. Mabbs, S. Gozem, A.I. Krylov, and A. Sanov
Dipole effects in the photoelectron angular distributions of the sulfur monoxide anion
Phys. Chem. Chem. Phys.
24, 23367 – 23381
(2022)
Abstract
PDF
282. A.M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A.V. Arbuznikov, P.W. Ayers, E.J. Baerends, V. Barone, P. Calaminici, E. Cances, E.A. Carter, P.K. Chattaraj, H. Chermette, I. Ciofini, T.D. Crawford, F. De Proft, J.F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P.M.W. Gill , P. Gori-Giorgi, A. Goerling, T. Gould, S. Grimme, O. Grinsenko, H.J.A. Jensen, E.R. Johnson, R.O. Johnes, M. Kaupp, A.M. Koester, L. Kronik, A.I. Krylov, S. Kvaal, A. Laestadius, M. Levi, M. Lewin, S. Liu, P.-F. Loos, N.T. Maitra, F. Neese, J.P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D.R. Salahub, M. Scheffler, P. Schwerdtfeger, V.N. Staroverov, S. Sun, E. Tellgren, D.J. Tozer, S.B. Trickey, C.A. Ullrich, A. Vela, G. Vignale, T.A. Wesolowski, W. Yang, and X. Xu
DFT exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science
Phys. Chem. Chem. Phys.
24, 28700 – 28781
(2022)
Abstract
Full text
281. J. Andersen, K.D. Nanda, A.I. Krylov, and S. Coriani
Cherry-picking resolvents: Recovering the valence contribution in X-ray two-photon absorption within the core-valence-separated equation-of-motion coupled-cluster response theory
J. Chem. Theo. Comp.
18, 6189 – 6202
(2022)
Abstract
PDF Supporting info
277. F. Plasser, A.I. Krylov, and A. Dreuw
libwfa: Wavefunction analysis tools for excited and open-shell electronic states
WIRES Comp. Mol. Sci.
12, e1595
(2022)
Abstract
PDF
275. J. A. Andersen, K. D. Nanda, A. I. Krylov, and S. Coriani
Probing molecular chirality of ground and electronically excited states in the UV–vis and X-ray regimes: An EOM-CCSD study
J. Chem. Theo. Comp.
18, 1748 – 1764
(2022)
Abstract
PDF Supporting info
269. S. Gulania and A. I. Krylov
Dissociative electron attachment in C2H via electronic resonances
Mol. Phys.
119, e1979262
(2021)
Abstract
PDF
267. M. Alessio and A.I. Krylov
Equation-of-motion coupled-cluster protocol for calculating magnetic properties:
Theory and applications to single-molecule magnets
J. Chem. Theo. Comp.
17, 4225 – 4241
(2021)
Abstract
PDF Supporting info
266. E. Epifanovsky and 219 co-authors
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
J. Chem. Phys.
155, 084801
(2021)
Abstract
PDF
264. K. Nanda and A.I. Krylov
The orbital picture of the first dipole hyperpolarizability from many-body response theory
J. Chem. Phys.
154, 184109
(2021)
Abstract
PDF Supporting info
262. S. Gulania, E. F. Kjonstad, J. F. Stanton, H. Koch, and A. I. Krylov
Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks
J. Chem. Phys. 154, 114115
(2021)
Abstract
PDF Supporting info
261. P. Pokhillko, D. Bezrukov, and A.I. Krylov
Is solid copper oxalate a spin chain or a mixture of entangled spin pairs?
J. Phys. Chem. C 125, 7502 – 7510
(2021)
Abstract
PDF Supporting info
260. S. Tsuru, M. Vidal, M. Papai, A.I. Krylov, K. B. Moller, and S. Coriani
An assessment of different electronic structure approaches for modeling time-resolved X-ray absorption spectroscopy
Struct. Dyn.
8, 024101
(2021)
Abstract
PDF Supporting info
259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. I. Theory and implementation
J. Chem. Phys.
154, 084124
(2021)
Abstract
PDF
258. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks
J. Chem. Phys.
154, 084125
(2021)
Abstract
PDF Supporting info
255. A. Carreras, H. Jiang, P. Pokhilko, A.I. Krylov, P. M. Zimmerman, and D. Casanova
Calculation of spin-orbit couplings using RASCI spinless one-particle density matrices: Theory and applications
J. Chem. Phys.
153, 214107
(2020)
Abstract
PDF Supporting info
252. K.D. Nanda and A.I. Krylov
Cherry-picking resolvents: A general strategy for convergent
coupled-cluster damped response calculations of core-level spectra
J. Chem. Phys.
153, 141104
(2020)
Abstract
PDF Supporting info
251. M. L. Vidal, P. Pokhilko, A.I. Krylov, and S. Coriani
Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra
J. Phys. Chem. Lett.
11, 8314 – 8321
(2020)
Abstract
PDF Supporting info
248. A.I. Krylov
From orbitals to observables and back
J. Chem. Phys.
153, 080901
(2020)
Abstract
Full text
246. K. Nanda and A.I. Krylov
A simple molecular orbital picture of RIXS distilled from many-body damped response theory
J. Chem. Phys.
152, 244118
(2020)
Abstract
PDF
245. R. Sarangi, M. L. Vidal, S. Coriani, and A. I. Krylov
On the basis set selection for calculations of core-level states: Different strategies to balance cost and accuracy
Mol. Phys.
118, e1769872
(2020)
Abstract
PDF
240. P. Pokhilko and A. I. Krylov
Effective Hamiltonians derived from equation-of-motion coupled-cluster wave-functions: Theory and application to the Hubbard and Heisenberg Hamiltonians
J. Chem. Phys.
152, 094108
(2020)
Abstract
PDF Supporting info
238. D. Casanova and A. I. Krylov
Spin-flip methods in quantum chemistry
Phys. Chem. Chem. Phys.
22, 4326 – 4342
(2020)
Abstract
PDF
236. P. Pokhilko, D. Izmodenov, and A. I. Krylov
Extension of frozen natural orbital approximation to open-shell references:
Theory, implementation, and application to single-molecule magnets
J. Chem. Phys.
152, 034105
(2020)
Abstract
PDF Supporting info
234. K. Nanda, M. L. Vidal, R. Faber, S. Coriani, and A. I. Krylov
Correction to: "How to
stay out of trouble in RIXS calculations within
equation-of-motion coupled-cluster damped response theory? Safe
hitchhiking in the excitation manifold by means of core-valence
separation"
Phys. Chem. Chem. Phys.
22, 17749
(2020)
Abstract
PDF
233. K. Nanda, M. L. Vidal, R. Faber, S. Coriani, and A. I. Krylov
How to
stay out of trouble in RIXS calculations within
equation-of-motion coupled-cluster damped response theory? Safe
hitchhiking in the excitation manifold by means of core-valence
separation
Phys. Chem. Chem. Phys.
22, 2629 – 2641
(2020)
Abstract
PDF Supporting info
232. M. L. Vidal, A. I. Krylov, and S. Coriani
Correction to "Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of
ground and excited states"
Phys. Chem. Chem. Phys.
22, 3744 – 3747
(2020)
Abstract
PDF
231. M. L. Vidal, A. I. Krylov, and S. Coriani
Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of
ground and excited states
Phys. Chem. Chem. Phys.
22, 2693 – 2703
(2020)
Abstract
PDF Supporting info
226. P. Pokhilko and A. I. Krylov
Quantitative El-Sayed rules for many-body wavefunctions from spinless transition density matrices
J. Phys. Chem. Lett.
10, 4857 – 4862
(2019)
Abstract
PDF Supporting info
224. P. Pokhilko, E. Epifanovsky, and A. I. Krylov
General framework for calculating spin–orbit couplings using
spinless one-particle density matrices:
Theory and application to the equation-of-motion
coupled-cluster wave functions
J. Chem. Phys.
151, 034106
(2019)
Abstract
PDF
223. X. Feng, E. Epifanovsky, J. Gauss, and A. I. Krylov
Implementation of analytic gradients for CCSD and EOM-CCSD
using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks
J. Chem. Phys.
151, 014110
(2019)
Abstract
PDF Supporting info
219. M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, and S. Coriani
A new and efficient equation-of-motion coupled-cluster
framework for core-excited and core-ionized states
J. Chem. Theo. Comp.
15, 3117 – 3133
(2019)
Abstract
PDF Supporting info
218. S. Gulania, T.-C. Jagau, and A. I. Krylov
EOM-CC guide to Fock-space travel: The C2 edition
Faraday Disc.
217, 514 – 532
(2019)
Abstract
PDF
215. K. D. Nanda, A. I. Krylov, and J. Gauss
Communication: The pole structure of the dynamical polarizability tensor in equation-of-motion coupled-cluster theory
J. Chem. Phys.
149, 141101
(2018)
Abstract
PDF
212. K. Nanda and A. I. Krylov
The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach
J. Chem. Phys.
149, 164109
(2018)
Abstract
PDF Supporting info
211. S. Matsika and A. I. Krylov
Introduction: Theoretical modeling of excited-state processes
Chem. Rev.
118, 6925 – 6926
(2018)
Abstract
PDF
210. W. Skomorowski and A. I. Krylov
Real and imaginary excitons: Making sense of resonance wavefunctions by
using reduced state and transition density matrices
J. Phys. Chem. Lett.
9, 4101
(2018)
Abstract
PDF Supporting info
205. P. Pokhilko, E. Epifanovsky, and A. I. Krylov
Double precision is not needed for many-body calculations:
Emergent conventional wisdom
J. Chem. Theo. Comp. 14, 4088 – 4096
(2018)
Abstract
PDF Supporting info
204. B. Hirshberg, R. B. Gerber, and A. I. Krylov
Autocorrelation of electronic wave-functions: A new approach for describing the evolution of electronic structure in the course of dynamics
Mol. Phys. 116, 2512 – 2523
(2018)
Abstract
PDF Supporting info
199. W. Skomorowski, S. Gulania, and A. I. Krylov
Bound and continuum-embedded states of cyanopolyyne anions
Phys. Chem. Chem. Phys. 20, 4805 – 4817
(2018)
Abstract
PDF Supporting info
198. S. Mewes, F. Plasser, A. I. Krylov, and A. Dreuw
Benchmarking excited-state calculations using exciton properties
J. Chem. Theo. Comp. 14, 710 – 725
(2018)
Abstract
PDF
195. S. Faraji, S. Matsika, and A. I. Krylov
Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework:
Theory, implementation, and validation against multi-reference methods
J. Chem. Phys. 148, 044103
(2018)
Abstract
PDF
194. N. Orms, D. R. Rehn, A. Dreuw, and A. I. Krylov
Characterizing bonding patterns in diradicals and triradicals by
density-based wave function analysis: A uniform approach
J. Chem. Theo. Comp. 14, 638 – 648
(2018)
Abstract
PDF
190. K.D. Nanda and A.I. Krylov
Visualizing the contributions of virtual states to two-photon
absorption cross-sections by natural
transition orbitals of response transition density matrices
J. Phys. Chem. Lett. 8, 3256 – 3265
(2017)
Abstract
PDF Supporting info
188. A. Sadybekov and A. I. Krylov
Coupled-cluster based approach for core-level states in condensed phase:
Theory and application to different protonated forms of aqueous glycine
J. Chem. Phys. 147, 014107
(2017)
Abstract
PDF Supporting info
182. K.Z. Ibrahim, E. Epifanovsky, S. Williams, and A.I. Krylov
Cross-scale efficient tensor contractions for coupled cluster computations through multiple
programming model backends
J. Parallel Distrib. Comput. 106, 92 – 105
(2017)
Abstract
PDF
180. S. Manzer, E. Epifanovsky, A.I. Krylov, and M. Head-Gordon
A general sparse tensor framework for electronic structure theory
J. Chem. Theo. Comp. 13, 1108 – 1116
(2017)
Abstract
PDF
179. T.-C. Jagau, K.B. Bravaya, and A.I. Krylov
Extending quantum chemistry of bound states to electronic resonances
Ann. Rev. Phys. Chem. 68, 525 – 553
(2017)
Abstract
PDF
178. A.I. Krylov
The quantum chemistry of open-shell species
Reviews in Comp. Chem. 30, 151 – 224
(2017)
Abstract
PDF
177. I. Kaliman and A.I. Krylov
New algorithm for tensor contractions on multi-core CPUs, GPUs, and
accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis
functions on a single compute node
J. Comp. Chem. 38, 842 – 853
(2017)
Abstract
PDF
175. A.O. Gunina and A.I. Krylov
Probing electronic wave functions of sodium-doped clusters:
Dyson orbitals, anisotropy parameters, and ionization cross-sections
J. Phys. Chem. A 120, 9841 – 9856
(2016)
Abstract
PDF Supporting info
174. K.D. Nanda and A.I. Krylov
Static polarizabilities for excited states within the
spin-conserving and spin-flipping equation-of-motion coupled-cluster
singles and doubles formalism: Theory, implementation and
benchmarks
J. Chem. Phys. 145, 204116
(2016)
Abstract
PDF Supporting info
168. T.-C. Jagau and A.I. Krylov
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
J. Chem. Phys. 144, 054113
(2016)
Abstract
PDF Supporting info
167. J. Brabec, C. Yang, E. Epifanovsky, A.I. Krylov, and E. Ng
Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations
J. Comp. Chem. 37, 1059 – 1067
(2016)
Abstract
PDF
163. S. Gozem, A.O. Gunina, T. Ichino, D.L. Osborn, J.F. Stanton, and A.I. Krylov
Photoelectron wave function in photoionization: Plane wave or Coulomb wave?
J. Phys. Chem. Lett. 6, 4532 – 4540
(2015)
Abstract
PDF Supporting info
160. E. Epifanovsky, K. Klein, S. Stopkowicz, J. Gauss, and A.I. Krylov
Spin-orbit couplings within the equation-of-motion coupled-cluster
framework: Theory, implementation, and benchmark calculations
J. Chem. Phys. 143, 064102
(2015)
Abstract
PDF
159. T.-C. Jagau, D.B. Dao, N.S. Holtgreve, A.I. Krylov, and R. Mabbs
Same but different:
Dipole-stabilized shape resonances in CuF- and AgF-
J. Phys. Chem. Lett. 6, 2786 – 2793
(2015)
Abstract
PDF Supporting info
157. A. V. Luzanov, D. Casanova, X. Feng, and A. I. Krylov
Quantifying charge resonance and multiexciton character in coupled chromophores by charge and spin cumulant analysis
J. Chem. Phys. 142, 224104
(2015)
Abstract
PDF
156. K. Nanda and A.I. Krylov
Two-photon absorption cross sections within equation-of-motion
coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations:
Theory, implementation, and benchmarks
J. Chem. Phys. 142, 064118
(2015)
Abstract
PDF Supporting info
154. D. Zuev, E. Vecharynski, C. Yang, N. Orms, and A.I. Krylov
New algorithms for iterative matrix-free eigensolvers in quantum chemistry
J. Comp. Chem. 36, 273 – 284
(2015)
Abstract
PDF
152. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Erratum: "Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks"
[J. Chem. Phys. 141, 024102 (2014)]
J. Chem. Phys. 143, 149901
(2015)
PDF
151. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A. I. Krylov
Correction to "A Fresh Look at Resonances and Complex Absorbing
Potentials: Density Matrix-Based Approach"
J. Phys. Chem. Lett. 6, 3866
(2015)
PDF
150. T.-C. Jagau and A.I. Krylov
Complex absorbing potential equation-of-motion coupled-cluster
method yields smooth and internally consistent potential energy surfaces
and lifetimes for molecular resonances
J. Phys. Chem. Lett. 5, 3078 – 3085
(2014)
Abstract
PDF Supporting info
149. S. Matsika, X. Feng, A.V. Luzanov, and A.I. Krylov
What we can learn from the norms of one-particle density
matrices, and what we can't:
Some results for interstate properties in
model singlet fission systems
J. Phys. Chem. A 118, 11943 – 11955
(2014)
Abstract
PDF Supporting info
148. K.Z. Ibrahim, S.W. Williams, E. Epifanovsky, and A.I. Krylov
Analysis and tuning of libtensor framework on multicore architectures
Proceedings of 21st Annual IEEE International Conference on High Performance Computing (HiPC 2014), 1 – 10
(2014)
Abstract
PDF
147. X. Feng, A.B. Kolomeisky, and A.I. Krylov
Dissecting the effect of morphology on the rates of singlet fission: Insights from theory
J. Phys. Chem. C 118, 19608 – 19617
(2014)
Abstract
PDF Supporting info
146. S. Gozem, F. Melaccio, A. Valentini, M. Filatov, M. Huix-Rotllant, N. Ferre, L.M. Frutos, C. Angeli, A.I. Krylov, A. Granovsky, R. Lindh, and M. Olivucci
Shape of multireference, equation-of-motion coupled-cluster, and density
functional theory potential energy surfaces at a conical intersection
J. Chem. Theor. Comp. 10, 3074 – 3084
(2014)
Abstract
PDF Supporting info
145. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Complex absorbing potentials within EOM-CC family of methods: Theory,
implementation, and benchmarks
J. Chem. Phys. 141, 024102
(2014)
Abstract
PDF
143. A.B. Kolomeisky, X. Feng, and A.I. Krylov
A simple kinetic model for singlet fission: A role of electronic and
entropic contributions to macroscopic rates
J. Phys. Chem. C 118, 5188 – 5195
(2014)
Abstract
PDF
142. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A.I. Krylov
A fresh look at resonances and complex absorbing potentials:
Density matrix based approach
J. Phys. Chem. Lett. 5, 310 – 315
(2014)
Abstract
PDF Supporting info
140. X. Feng, A.V. Luzanov, and A.I. Krylov
Fission of entangled spins: An electronic structure perspective
J. Phys. Chem. Lett. 4, 3845 – 3852
(2013)
Abstract
PDF Supporting info
139. E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, and A.I. Krylov
General implementation of resolution-of-identity and
Cholesky representations of electron-repulsion integrals within
coupled-cluster and equation-of-motion methods: Theory and benchmarks
J. Chem. Phys. 139, 134105
(2013)
Abstract
PDF Supporting info
138. S. Gozem, F. Melaccio, R. Lindh, A.I. Krylov, A. Granovsky, C. Angeli, and M. Olivucci
Mapping the excited state potential energy surface of a retinal
chromophore model with multireference and EOM-CC methods
J. Chem. Theor. Comp. 9, 4495 – 4506
(2013)
Abstract
PDF Supporting info
135. E. Epifanovsky, M. Wormit, T. Kus, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman, A. Dreuw, and A.I. Krylov
New Implementation of high-level correlated methods using a general block-tensor library for
high-performance electronic structure calculations
J. Comp. Chem. 34, 2293 – 2309
(2013)
Abstract
PDF Supporting info
131. K.B. Bravaya, D. Zuev, E. Epifanovsky, and A.I. Krylov
Complex-scaled equation-of-motion coupled-cluster method with single
and double substitutions for autoionizing excited states:
Theory, implementation, and examples
J. Chem. Phys. 138, 124106
(2013)
Abstract
PDF Supporting info
130. D. Ghosh, D. Kosenkov, V. Vanovschi, J. Flick, I. Kaliman, Y. Shao, A.T.B. Gilbert, A.I. Krylov, and L.V. Slipchenko
Effective Fragment Potential method in Q-Chem: A guide for users
and developers
J. Comp. Chem. 34, 1060 – 1070
(2013)
Abstract
PDF Supporting info
129. S. Gozem, A.I. Krylov, and M. Olivucci
Conical intersection and potential energy surface features of a
model retinal chromophore: Comparison of EOM-CC and multireference methods
J. Chem. Theor. Comp 9, 284 – 292
(2013)
Abstract
PDF Supporting info
127. A.I. Krylov and P.M.W. Gill
Q-Chem: An engine for innovation
WIREs Comput. Mol. Sci. 3, 317 – 326
(2013)
Abstract
PDF
123. T. Kus and A. I. Krylov
De-perturbative corrections for charge-stabilized double ionization
potential equation-of-motion coupled-cluster method
J. Chem. Phys. 136, 244109
(2012)
Abstract
PDF
122. Y.A. Bernard, Y. Shao, and A.I. Krylov
General formulation of spin-flip time-dependent density
functional theory using non-collinear kernels: Theory, implementation,
and benchmarks
J. Chem. Phys. 136, 204103
(2012)
Abstract
PDF Supporting info
121. D. Ghosh, A. Roy, R. Seidel, B. Winter, S.E. Bradforth, and A.I. Krylov
First-principle protocol for calculating ionization energies and redox
potentials of solvated molecules and ions: Theory and application to aqueous
phenol and phenolate
J. Phys. Chem. B 116, 7269 – 7280
(2012)
Abstract
PDF Supporting info
107. T. Kus and A. I. Krylov
Using the charge stabilization technique in the double ionization potential equation-of-motion calculations with dianion references
J. Chem. Phys. 135, 084109
(2011)
Abstract
PDF Supporting info
86. A. Landau, K. Khistyaev, S. Dolgikh, and A.I. Krylov
Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism
J. Chem. Phys. 132, 014109
(2010)
Abstract
PDF
85. C.M. Oana and A.I. Krylov
Cross sections and photoelectron angular distributions
in photodetachment from negative ions using
equation-of-motion coupled-cluster Dyson orbitals
J. Chem. Phys. 131, 124114
(2009)
Abstract
PDF
84. P.U. Manohar, J.F. Stanton, and A.I. Krylov
Perturbative triples correction for the
equation-of-motion coupled-cluster wave functions
with single and double substitutions for ionized states:
Theory, implementation, and examples
J. Chem. Phys. 131, 114112
(2009)
Abstract
PDF
76. A.A. Golubeva, P.A. Pieniazek, and A.I. Krylov
A new electronic structure method for doublet states:
configuration interaction in the space of ionized 1h and 2h1p determinants
J. Chem. Phys. 130, 124113
(2009)
Abstract
PDF Supporting info
73. D. Casanova, L.V. Slipchenko, A.I. Krylov, and M. Head-Gordon
Double spin-flip approach within equation-of-motion coupled
cluster and conguration interaction formalisms: Theory,
implementation and examples
J. Chem. Phys. 130, 044103
(2009)
Abstract
PDF
70. P.U. Manohar and A.I. Krylov
A non-iterative perturbative triples correction for
the spin-flipping and spin-conserving equation-of-motion coupled-cluster
methods with single and double substitutions
J. Chem. Phys. 129, 194105
(2008)
Abstract
PDF
67. P.A. Pieniazek, S.E. Bradforth, and A.I. Krylov
Charge localization and Jahn-Teller distortions in the
benzene dimer cation
J. Chem. Phys. 129, 074104
(2008)
Abstract
PDF
62. A. I. Krylov
Equation-of-motion coupled-cluster methods for open-shell
and electronically excited species: The hitchhiker's guide to Fock
space
Ann. Rev. Phys. Chem. 59, 433 – 462
(2008)
Abstract
PDF
59. C.M. Oana and A.I. Krylov
Dyson orbitals for ionization from the ground and electronically
excited states within equation-of-motion coupled-cluster formalism:
Theory, implementation, and examples
J. Chem. Phys. 127, 234106
(2007)
Abstract
PDF (873 kB)
58. A.A. Golubeva, A.V. Nemukhin, S.J. Klippenstein, L.B. Harding, and A.I. Krylov
Performance of the spin-flip and multi-reference methods for
bond-breaking in hydrocarbons: A benchmark study
J. Phys. Chem. A 111, 13264 – 13271
(2007)
Abstract
PDF (162 kB)
57. P. A. Pieniazek, S. A. Arnstein, S. E. Bradforth, A. I. Krylov, and C. D. Sherrill
Benchmark full configuration interaction and EOM-IP-CCSD
results for prototypical charge transfer systems: Noncovalent ionized dimers
J. Chem. Phys. 127, 164110
(2007)
Abstract
PDF (1542 kB)
55. E. Epifanovsky and A. I. Krylov
Direct location of the minimum point on intersection seams
of potential energy surfaces with equation-of-motion coupled-cluster
methods
Mol. Phys. 105, 2515 – 2525
(2007)
Abstract
PDF (240 kB)
48. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neil, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Bird, H. Daschel, R. J. Doerksen, A. Drew, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. S. Kedziora, R. Z. Khalliulin, P. Klunziger, A. M. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Herhe, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon
Advances in methods and algorithms in a modern quantum chemistry
program package
Phys. Chem. Chem. Phys. 8, 3172 – 3191
(2006)
Abstract
PDF (863 kB)
43. L.V. Slipchenko and A.I. Krylov
Efficient strategies for accurate calculations of electronic
excitation and ionization energies: Theory and application to the
dehydro-meta-xylylene anion
J. Phys. Chem. A 110, 291 – 298
(2006)
Abstract
PDF (150 kB)
42. L. V. Slipchenko and A. I. Krylov
Spin-conserving and spin-flipping equation-of-motion coupled-cluster
method with triple excitations
J. Chem. Phys. 123, 84107
(2005)
Abstract
PDF (173 kB)
39. A. I. Krylov
The spin-flip equation-of-motion coupled-cluster electronic
structure method for a description of excited states, bond-breaking,
diradicals, and triradicals
Acc. Chem. Res. 39, 83 – 91
(2006)
Abstract
PDF (246 kB)
38. S. V. Levchenko, T. Wang, and A. I. Krylov
Analytic gradients for the spin-conserving and spin-flipping
equation-of-motion coupled-cluster models with single and double
substitutions
J. Chem. Phys. 122, 224106
(2005)
Abstract
PDF (146 kB)
34. S. V. Levchenko and A. I. Krylov
Equation-of-motion spin-flip coupled-cluster model with single and
double substitutions: Theory and application to
cyclobutadiene
J. Chem. Phys. 120, 175 – 185
(2004)
Abstract
PDF (195 kB)
31. J. S. Sears, C. D. Sherrill, and A. I. Krylov
A spin-complete version of the spin-flip approach to bond breaking:
What is the impact of obtaining spin eigenfunctions?
J. Chem. Phys. 118, 9084 – 9094
(2003)
Abstract
PDF (150 kB)
28. Y. Shao, M. Head-Gordon, and A. I. Krylov
The spin-flip approach within time-dependent density functional
theory: Theory and applications to diradicals
J. Chem. Phys. 118, 4807 – 4818
(2003)
Abstract
PDF (185 kB)
27. A. I. Krylov, L. V. Slipchenko, and S. V. Levchenko
Breaking the curse of the non-dynamical correlation problem: The spin-flip method
ACS Symposium Series 958, 89 – 102
(2007)
PDF (657 kB)
26. L. V. Slipchenko and A. I. Krylov
Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study
J. Chem. Phys. 117, 4694 – 4708
(2002)
Abstract
PDF (237 kB)
24. A. I. Krylov and C. D. Sherrill
Perturbative corrections to the equation-of-motion spin-flip SCF model: Application to bond-breaking and equilibrium properties of diradicals
J. Chem. Phys. 116, 3194 – 3203
(2002)
Abstract
PDF (122 kB)
23. A. I. Krylov
Spin-flip configuration interaction: An electronic structure model
that is both variational and size-consistent
Chem. Phys. Lett. 350, 522 – 530
(2001)
Abstract
PDF (148 kB)
20. A. I. Krylov
Size-consistent wave functions for bond-breaking: The
equation-of-motion spin-flip model
Chem. Phys. Lett. 338, 375 – 384
(2001)
Abstract
PDF (114 kB)
19. A. I. Krylov
Spin-contanination in coupled-cluster wavefunctions
J. Chem. Phys. 113, 6052 – 6062
(2000)
Abstract
PDF (144 kB)
18. A. I. Krylov, C. D. Sherrill, and M. Head-Gordon
Excited states theory for optimized orbitals and valence optimized
orbitals coupled-cluster doubles models
J. Chem. Phys. 113, 6509 – 6527
(2000)
Abstract
PDF (212 kB)
17. J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, T. R. Furlani, M. S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, C. Ochsenfeld, A. T. B. Gilbert, G. S. Kedziora, V. A. Rassolov, D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. Maslen, J. P. Dombroski, H. Daschel, W. Zhang, P. P. Korambath, J. Baker, E. F. C. Bird, T. Van Voorhis, M. Oumi, S. Hirata, C.-P. Hsu, N. Ishikawa, J. Florian, A. Warshel, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, and J. A. Pople
Q-Chem 2.0: A high performance ab initio electronic structure
program package
J. Comp. Chem. 21, 1532 – 1548
(2000)
Abstract
PDF (283 kB)
16. S. R. Gwaltney, C. D. Sherrill, M. Head-Gordon, and A. I. Krylov
Second order perturbation corrections to singles and doubles
coupled-cluster methods: General theory and applications to the
valence optimized doubles model
J. Chem. Phys. 113, 3548 – 3560
(2000)
Abstract
PDF (173 kB)