Resonances
The main challenge in theoretical treatment of electronically metastable states
is how to combine high-level correlation treatment with non-L2-integrable wave functions.
Non-Hermitian quantum mechanics, which can be formulated by using complex scaling and complex absorbing potentials (CAPs),
offers a powerful route to addressing this challenge. Our complex-valued extension of EOM-CC allows one to treat various
types of resonances on the same footing as bound states.
Related Publications
316. N.K. Jayadev, T.-C. Jagau, and A.I. Krylov
Resonant Auger decay in benzene
J. Phys. Chem. A
, submitted
(2024)
Abstract
Preprint
300. K. Chatterjee, Z. Koczor-Benda, X. Feng, A.I. Krylov, and T.-C. Jagau
Analytic evaluation of non-adiabatic couplings within the complex absorbing potential equation-of-motion coupled-cluster method
J. Chem. Theo. Comp.
19, 5281 – 5834
(2023)
Abstract
PDF
294. N.K. Jayadev, A. Ferino-Perez, F. Matz, A.I. Krylov, and T.-C. Jagau
The Auger spectrum of benzene
J. Chem. Phys.
158, 064109
(2023)
Abstract
PDF
284. M. Mukherjee, R. Kumar T. P., M. Rankovic, P. Nag, J. Fedor, and A.I. Krylov
Spectroscopic signatures of states in the continuum characterized by a joint
experimental and theoretical study of pyrrole
J. Chem. Phys.
157, 204305
(2022)
Abstract
PDF Supporting info
259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. I. Theory and implementation
J. Chem. Phys.
154, 084124
(2021)
Abstract
PDF
258. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks
J. Chem. Phys.
154, 084125
(2021)
Abstract
PDF Supporting info
218. S. Gulania, T.-C. Jagau, and A. I. Krylov
EOM-CC guide to Fock-space travel: The C2 edition
Faraday Disc.
217, 514 – 532
(2019)
Abstract
PDF
210. W. Skomorowski and A. I. Krylov
Real and imaginary excitons: Making sense of resonance wavefunctions by
using reduced state and transition density matrices
J. Phys. Chem. Lett.
9, 4101
(2018)
Abstract
PDF Supporting info
199. W. Skomorowski, S. Gulania, and A. I. Krylov
Bound and continuum-embedded states of cyanopolyyne anions
Phys. Chem. Chem. Phys. 20, 4805 – 4817
(2018)
Abstract
PDF Supporting info
179. T.-C. Jagau, K.B. Bravaya, and A.I. Krylov
Extending quantum chemistry of bound states to electronic resonances
Ann. Rev. Phys. Chem. 68, 525 – 553
(2017)
Abstract
PDF
168. T.-C. Jagau and A.I. Krylov
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
J. Chem. Phys. 144, 054113
(2016)
Abstract
PDF Supporting info
159. T.-C. Jagau, D.B. Dao, N.S. Holtgreve, A.I. Krylov, and R. Mabbs
Same but different:
Dipole-stabilized shape resonances in CuF- and AgF-
J. Phys. Chem. Lett. 6, 2786 – 2793
(2015)
Abstract
PDF Supporting info
152. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Erratum: "Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks"
[J. Chem. Phys. 141, 024102 (2014)]
J. Chem. Phys. 143, 149901
(2015)
PDF
151. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A. I. Krylov
Correction to "A Fresh Look at Resonances and Complex Absorbing
Potentials: Density Matrix-Based Approach"
J. Phys. Chem. Lett. 6, 3866
(2015)
PDF
150. T.-C. Jagau and A.I. Krylov
Complex absorbing potential equation-of-motion coupled-cluster
method yields smooth and internally consistent potential energy surfaces
and lifetimes for molecular resonances
J. Phys. Chem. Lett. 5, 3078 – 3085
(2014)
Abstract
PDF Supporting info
145. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Complex absorbing potentials within EOM-CC family of methods: Theory,
implementation, and benchmarks
J. Chem. Phys. 141, 024102
(2014)
Abstract
PDF
142. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A.I. Krylov
A fresh look at resonances and complex absorbing potentials:
Density matrix based approach
J. Phys. Chem. Lett. 5, 310 – 315
(2014)
Abstract
PDF Supporting info
131. K.B. Bravaya, D. Zuev, E. Epifanovsky, and A.I. Krylov
Complex-scaled equation-of-motion coupled-cluster method with single
and double substitutions for autoionizing excited states:
Theory, implementation, and examples
J. Chem. Phys. 138, 124106
(2013)
Abstract
PDF Supporting info