Resonances

The main challenge in theoretical treatment of electronically metastable states is how to combine high-level correlation treatment with non-L2-integrable wave functions. Non-Hermitian quantum mechanics, which can be formulated by using complex scaling and complex absorbing potentials (CAPs), offers a powerful route to addressing this challenge. Our complex-valued extension of EOM-CC allows one to treat various types of resonances on the same footing as bound states.


Related Publications

316. N.K. Jayadev, T.-C. Jagau, and A.I. Krylov
Resonant Auger decay in benzene
J. Phys. Chem. A , submitted (2024) Abstract  Preprint

300. K. Chatterjee, Z. Koczor-Benda, X. Feng, A.I. Krylov, and T.-C. Jagau
Analytic evaluation of non-adiabatic couplings within the complex absorbing potential equation-of-motion coupled-cluster method
J. Chem. Theo. Comp.  19, 5281 – 5834 (2023) Abstract  PDF 

294. N.K. Jayadev, A. Ferino-Perez, F. Matz, A.I. Krylov, and T.-C. Jagau
The Auger spectrum of benzene
J. Chem. Phys.  158, 064109 (2023) Abstract  PDF 

284. M. Mukherjee, R. Kumar T. P., M. Rankovic, P. Nag, J. Fedor, and A.I. Krylov
Spectroscopic signatures of states in the continuum characterized by a joint experimental and theoretical study of pyrrole
J. Chem. Phys.  157, 204305 (2022) Abstract  PDF Supporting info

259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation
J. Chem. Phys.  154, 084124 (2021) Abstract  PDF 

258. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks
J. Chem. Phys.  154, 084125 (2021) Abstract  PDF Supporting info

218. S. Gulania, T.-C. Jagau, and A. I. Krylov
EOM-CC guide to Fock-space travel: The C2 edition
Faraday Disc.  217, 514 – 532 (2019) Abstract  PDF 

210. W. Skomorowski and A. I. Krylov
Real and imaginary excitons: Making sense of resonance wavefunctions by using reduced state and transition density matrices
J. Phys. Chem. Lett.  9, 4101 (2018) Abstract  PDF Supporting info

199. W. Skomorowski, S. Gulania, and A. I. Krylov
Bound and continuum-embedded states of cyanopolyyne anions
Phys. Chem. Chem. Phys. 20, 4805 – 4817 (2018) Abstract  PDF Supporting info

179. T.-C. Jagau, K.B. Bravaya, and A.I. Krylov
Extending quantum chemistry of bound states to electronic resonances
Ann. Rev. Phys. Chem. 68, 525 – 553 (2017) Abstract  PDF 

168. T.-C. Jagau and A.I. Krylov
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
J. Chem. Phys. 144, 054113 (2016) Abstract  PDF Supporting info

159. T.-C. Jagau, D.B. Dao, N.S. Holtgreve, A.I. Krylov, and R. Mabbs
Same but different: Dipole-stabilized shape resonances in CuF- and AgF-
J. Phys. Chem. Lett. 6, 2786 – 2793 (2015) Abstract  PDF Supporting info

152. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Erratum: "Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks" [J. Chem. Phys. 141, 024102 (2014)]
J. Chem. Phys. 143, 149901 (2015) PDF 

151. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A. I. Krylov
Correction to "A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach"
J. Phys. Chem. Lett. 6, 3866 (2015) PDF 

150. T.-C. Jagau and A.I. Krylov
Complex absorbing potential equation-of-motion coupled-cluster method yields smooth and internally consistent potential energy surfaces and lifetimes for molecular resonances
J. Phys. Chem. Lett. 5, 3078 – 3085 (2014) Abstract  PDF Supporting info

145. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov
Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks
J. Chem. Phys. 141, 024102 (2014) Abstract  PDF 

142. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A.I. Krylov
A fresh look at resonances and complex absorbing potentials: Density matrix based approach
J. Phys. Chem. Lett. 5, 310 – 315 (2014) Abstract  PDF Supporting info

131. K.B. Bravaya, D. Zuev, E. Epifanovsky, and A.I. Krylov
Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: Theory, implementation, and examples
J. Chem. Phys. 138, 124106 (2013) Abstract  PDF Supporting info