Interface between electronic structure, spectroscopy, and dynamics
Modeling spectra is crucial for interpreting the experimental measurements and validating
electronic structure methodology. We develop computational
tools for modeling FCFs, anharmonic effects, photoionization and photodetachment
cross sections, and more. Within electronic structure domain, more work remains to be done
for modeling non-linear optical phenomena, core-level spectra, and spectroscopic signatures
of resonances. The inspiration for this work often comes from collaborations with experimentalists.
Related Publications
317. G. Giudetti, Shaama M. Sharada, and A.I. Krylov
AIMD-based protocols for modeling exciplex fluorescence spectra and inter-system crossing in photocatalytic chromophores
J. Comp. Chem.
, submitted
(2024)
Abstract
316. N.K. Jayadev, T.-C. Jagau, and A.I. Krylov
Resonant Auger decay in benzene
J. Phys. Chem. A
, submitted
(2024)
Abstract
Preprint
315. P. Wojcik, T. Khvorsot, G. Lao, C.G. Zhu, A. Macias, J.R. Caram, W.C. Campbell, M.A. Garcıa-Garibay, E.R. Hudson, A. Alexandrova, and A.I. Krylov
Photoswitching molecules functionalized with optical cycling centers provide a novel platform for studying chemical transformations in ultracold molecules
J. Phys. Chem. A
, submitted
(2024)
Abstract
Preprint
314. P. Wojcik, H. Reisler, P. Szalay, A.I. Krylov, and J.F. Stanton
Vibronic coupling effects in the photoelectron spectrum of ozone: A coupled-cluster approach
J. Phys. Chem. A
, in press
(2024)
Abstract
Preprint
309. O. Haggag, R. Baer, S. Ruhman, and A.I. Krylov
Revisiting the benzene excimer using [2,2] paracyclophane model system: Experiment and theory
J. Chem. Phys.
160, 124111
(2024)
Abstract
PDF Supporting info
308. A. Patra, G. Pippim, A.I. Krylov, and S.M. Sharada
Performance of density functionals for excited-state properties of isolated chromophores and exciplexes: Emission spectra, solvatochromic shifts, and charge-transfer character
J. Chem. Theo. Comp.
20, 2520 – 2537
(2024)
Abstract
PDF
305. R. Sarangi, K. Nanda, and A.I. Krylov
Two- and one-photon absorption spectra of aqueous thiocyanate
anion highlight the role of symmetry in condensed phase
J. Comp. Chem.
45, 878 – 885
(2024)
Abstract
PDF
304. S. Dey, S. D. Folkestad, A. Paul, H. Koch, and A.I. Krylov
Core-ionization spectrum of liquid water
Phys. Chem. Chem. Phys.
26, 1845 – 1859
(2024)
Abstract
PDF Supporting info
294. N.K. Jayadev, A. Ferino-Perez, F. Matz, A.I. Krylov, and T.-C. Jagau
The Auger spectrum of benzene
J. Chem. Phys.
158, 064109
(2023)
Abstract
PDF
293. M. Epstein, B.N. Cabral Tenorio, M.L. Vidal, V. Scutelnic, Z. Yang, T. Xue, A.I. Krylov, S. Coriani, and S.R. Leone
Signatures of the bromine atom and open-shell spin-coupling in the x-ray spectrum of bromobenzene cation
J. Am. Chem. Soc.
145, 3554 – 3560
(2023)
Abstract
PDF
291. M.M. Foreman, M. Alessio, A.I. Krylov, and J.M. Weber
Influence of transition metal electron configuration on the structure of metal-EDTA complexes
J. Phys. Chem. A
127, 2258 – 2264
(2023)
Abstract
PDF
287. R. Sarangi, K. Nanda, and A.I. Krylov
Charge-transfer-to-solvent states provide a sensitive spectroscopic probe of the local solvent structure around anions
Mol. Phys.
121, e2148582
(2023)
Abstract
PDF
284. M. Mukherjee, R. Kumar T. P., M. Rankovic, P. Nag, J. Fedor, and A.I. Krylov
Spectroscopic signatures of states in the continuum characterized by a joint
experimental and theoretical study of pyrrole
J. Chem. Phys.
157, 204305
(2022)
Abstract
PDF Supporting info
275. J. A. Andersen, K. D. Nanda, A. I. Krylov, and S. Coriani
Probing molecular chirality of ground and electronically excited states in the UV–vis and X-ray regimes: An EOM-CCSD study
J. Chem. Theo. Comp.
18, 1748 – 1764
(2022)
Abstract
PDF Supporting info
274. S. Gozem and A. I. Krylov
The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling
WIRES Comp. Mol. Sci.
12, e1546
(2022)
Abstract
PDF
259. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. I. Theory and implementation
J. Chem. Phys.
154, 084124
(2021)
Abstract
PDF
258. W. Skomorowski and A.I. Krylov
Feshbach-Fano approach for calculation of Auger decay rates using
equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks
J. Chem. Phys.
154, 084125
(2021)
Abstract
PDF Supporting info
255. A. Carreras, H. Jiang, P. Pokhilko, A.I. Krylov, P. M. Zimmerman, and D. Casanova
Calculation of spin-orbit couplings using RASCI spinless one-particle density matrices: Theory and applications
J. Chem. Phys.
153, 214107
(2020)
Abstract
PDF Supporting info
254. M. L. Vidal, M. Epshtein, V. Scutelnic, Z. Yang, T. Xue, S. R. Leone, A. I. Krylov, and S. Coriani
The interplay of open-shell spin-coupling and Jahn-Teller distortion in benzene radical cation probed by X-ray spectroscopy
J. Phys. Chem. A
124, 9532 – 9541
(2020)
Abstract
PDF Supporting info
253. M. Epshtein, V. Scutelnic, Z. Yang, T. Xue, M. L. Vidal, A. I. Krylov, S. Coriani, and S. R. Leone
Table-top X-ray spectroscopy of benzene radical cation
J. Phys. Chem. A
124, 9524 – 9531
(2020)
Abstract
PDF Supporting info
252. K.D. Nanda and A.I. Krylov
Cherry-picking resolvents: A general strategy for convergent
coupled-cluster damped response calculations of core-level spectra
J. Chem. Phys.
153, 141104
(2020)
Abstract
PDF Supporting info
251. M. L. Vidal, P. Pokhilko, A.I. Krylov, and S. Coriani
Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra
J. Phys. Chem. Lett.
11, 8314 – 8321
(2020)
Abstract
PDF Supporting info
246. K. Nanda and A.I. Krylov
A simple molecular orbital picture of RIXS distilled from many-body damped response theory
J. Chem. Phys.
152, 244118
(2020)
Abstract
PDF
245. R. Sarangi, M. L. Vidal, S. Coriani, and A. I. Krylov
On the basis set selection for calculations of core-level states: Different strategies to balance cost and accuracy
Mol. Phys.
118, e1769872
(2020)
Abstract
PDF
244. S. Gozem, R. Seidel, U. Hergenhahn, E. Lugovoy, B. Abel, B. Winter, A. I. Krylov, and S. E. Bradforth
Probing the electronic structure of bulk water at the molecular lengthscale with angle-resolved photoelectron spectroscopy
J. Phys. Chem. Lett.
11, 5162 – 5170
(2020)
Abstract
PDF Supporting info
243. L. Kjellsson, K. Nanda, J.-E. Rubensson, G. Doumy, S. H. Southworth, P. J. Ho, A. M. March, A. Al Haddad, Y. Kumagai, M.-F. Tu, T. Debnath, M. S. Bin Mohd Yusof, C. Arnold, W. F. Schlotter, S. Moeller, G. Coslovich, J. D. Koralek, M. P. Minitti, M. L. Vidal, M. Simon, R. Santra, Z.-H. Loh, S. Coriani, A. I. Krylov, and L. Young
Resonant inelastic x-ray scattering reveals hidden local transitions of the aqueous OH radical
Phys. Rev. Lett.
124, 236001
(2020)
Abstract
PDF Supporting info
239. O. Haggag, P. Malakar, P. Pokhilko, J. F. Stanton, A. I. Krylov, and S. Ruhman
The elusive dynamics of aqueous permanganate photochemistry
Phys. Chem. Chem. Phys.
22, 10043 – 10055
(2020)
Abstract
PDF
237. S. Gulania, T.-C. Jagau, A. Sanov, and A. I. Krylov
The quest to uncover the nature of benzonitrile anion
Phys. Chem. Chem. Phys.
22, 5002 – 5010
(2020)
Abstract
PDF Supporting info
235. Z.-H. Loh, G. Doumy, C. Arnold, L. Kjellsson, S. H. Southworth, A. Al Haddad, Y. Kumagai, M.-F. Tu, P. J. Ho, A. M. March, R. D. Schaller, M. S. Bin Mohd Yusof, T. Debnath, M. Simon, R. Welsch, L. Inhester, K. Khalili, K. Nanda, A. I. Krylov, S. Moeller, G. Coslovich, J. Koralek, M. P. Minitti, W. F. Schlotter, J.-E. Rubensson, R. Santra, and L. Young
Observation of the fastest chemical processes in the radiolysis of water
Science
367, 179 – 182
(2020)
Abstract
PDF Supporting info
220. A. Barrozo, B. Xu, A. O. Gunina, M. Jacobs, K. Wilson, O. Kostko, M. Ahmed, and A. I. Krylov
To be or not to be a molecular ion: The role of the solvent in photoionization of arginine
J. Phys. Chem. Lett.
10, 1860 – 1865
(2019)
Abstract
PDF
202. L. G. Dodson, J. D. Savee, S. Gozem, L. Shen, A. I. Krylov, C. A. Taatjes, D. L. Osborn, and M. Okumura
Vacuum ultraviolet photoionization cross section of the hydroxyl radical
J. Chem. Phys. 148, 184302
(2018)
Abstract
PDF
192. J. Lyle, O. Wedig, S. Gulania, A. I. Krylov, and R. Mabbs
Channel branching ratios in CH2CN− photodetachment: Rotational structure and vibrational
energy redistribution in autodetachment
J. Chem. Phys. 147, 234309
(2017)
Abstract
PDF Supporting info
189. E. Hossain, S.M. Deng, S. Gozem, A.I. Krylov, X.-B. Wang, and P.G. Wenthold
Photoelectron spectroscopy study of quinonimides
J. Am. Chem. Soc. 139, 11138 – 11148
(2017)
Abstract
PDF
188. A. Sadybekov and A. I. Krylov
Coupled-cluster based approach for core-level states in condensed phase:
Theory and application to different protonated forms of aqueous glycine
J. Chem. Phys. 147, 014107
(2017)
Abstract
PDF Supporting info
186. S. Xu, J. Smith, S. Gozem, A.I. Krylov, and J.M. Weber
Electronic spectra of tris(2,2'-bipyridine)-M(II) complex ions in vacuo (M = Fe and Os)
Inorg. Chem. 56, 7029 – 7037
(2017)
Abstract
PDF
184. M. de Wergifosse, A.L. Houk, A.I. Krylov, and C.G. Elles
Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene,
and phenanthrene: Theory and experiment
J. Chem. Phys. 146, 144305
(2017)
Abstract
PDF
183. M. de Wergifosse, C.G. Elles, and A.I. Krylov
Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene
J. Chem. Phys. 146, 174102
(2017)
Abstract
PDF
159. T.-C. Jagau, D.B. Dao, N.S. Holtgreve, A.I. Krylov, and R. Mabbs
Same but different:
Dipole-stabilized shape resonances in CuF- and AgF-
J. Phys. Chem. Lett. 6, 2786 – 2793
(2015)
Abstract
PDF Supporting info
134. K.B. Bravaya and A.I. Krylov
On the photodetachment from the Green Fluorescent Protein chromophore
J. Phys. Chem. A 117, 11815 – 11822
(2013)
Abstract
PDF Supporting info
105. E. Kamarchik and A.I. Krylov
Non-Condon effects in one- and two-photon absorption spectra of the
green fluorescent protein
J. Chem. Phys. Lett. 2, 488 – 492
(2011)
Abstract
PDF Supporting info
104. K. Khistyaev, K.B. Bravaya, E. Kamarchik, O. Kostko, M. Ahmed, and A.I. Krylov
The effect of microhydration on ionization energies of thymine
Faraday Disc. 150, 313 – 330
(2011)
Abstract
PDF
103. D. Ghosh, O. Isayev, L.V. Slipchenko, and A.I. Krylov
The effect of solvation on vertical ionization energy of thymine: From microhydration to bulk
J. Phys. Chem. A 115, 6028 – 6038
(2011)
Abstract
PDF Supporting info
99. K.B. Bravaya, O. Kostko, S. Dolgikh, A. Landau, M. Ahmed, and A.I. Krylov
Electronic structure and spectroscopy of nucleic acid bases:
Ionization energies, ionization-induced structural changes, and photoelectron
spectra
J. Phys. Chem. A 114, 12305 – 12317
(2010)
Abstract
PDF Supporting info
95. V. Mozhayskiy, D.J. Goebbert, L. Velarde, A. Sanov, and A.I. Krylov
Electronic structure and spectroscopy of oxyallyl: A theoretical study
J. Phys. Chem. A 114, 6935 – 6943
(2010)
Abstract
PDF Supporting info
93. E. Kamarchik, O. Kostko, J.M. Bowman, M. Ahmed, and A.I. Krylov
Spectroscopic signatures of proton transfer dynamics in the water dimer cation
J. Chem. Phys. 132, 194311
(2010)
Abstract
PDF
85. C.M. Oana and A.I. Krylov
Cross sections and photoelectron angular distributions
in photodetachment from negative ions using
equation-of-motion coupled-cluster Dyson orbitals
J. Chem. Phys. 131, 124114
(2009)
Abstract
PDF
83. L. Koziol, V.A. Mozhayskiy, B.J. Braams, J.M. Bowman, and A.I. Krylov
Ab initio calculation of photoelectron spectra of the hydroxycarbene diradicals
J. Phys. Chem. A 113, 7802 – 7809
(2009)
Abstract
PDF
63. L. Koziol, Y. Wang, B.J. Braams, J.M. Bowman, and A. I. Krylov
The theoretical prediction of
infrared spectra of trans- and cis- hydroxycarbene
calculated using full dimensional ab initio potential energy and dipole
moment surfaces
J. Chem. Phys 128, 204310
(2008)
Abstract
PDF
61. V. Vanovschi, A. I. Krylov, and P. G. Wenthold
Structure, vibrational frequencies, ionization energies, and
photoelectron spectrum of the para-benzyne radical anion
Theor. Chem. Acc. 120, 45 – 58
(2008)
Abstract
PDF
59. C.M. Oana and A.I. Krylov
Dyson orbitals for ionization from the ground and electronically
excited states within equation-of-motion coupled-cluster formalism:
Theory, implementation, and examples
J. Chem. Phys. 127, 234106
(2007)
Abstract
PDF (873 kB)