Spin-flip methods

Spin-flip approach extends standard quantum chemistry to strongly correlated systems. Examples of applications include di- and triradicals, singlet fission, and single-molecule magnets.


Related Publications

290. M. Alessio, S. Kotaru, G. Giudetti, and A.I. Krylov
Origin of magnetic anisotropy in nickelocene molecular magnet and resilience of its magnetic behavior
J. Phys. Chem. C  127, 3647 – 3659 (2023) Abstract  PDF Supporting info

288. S. Kotaru, M. Alessio, S. Kaehler, and A.I. Krylov
Magnetic exchange interactions in binuclear and tetranuclear iron (III) complexes described by spin-flip DFT and Heisenberg effective Hamiltonians
J. Comp. Chem.  44, 367 – 380 (2023) Abstract  PDF 

285. S. Kotaru, P. Pokhilko, and A.I. Krylov
Spin-orbit couplings within spin-conserving and spin-flipping time-dependent density functional theory: Implementation and benchmark calculations
J. Chem. Phys.  157, 224110 (2022) Abstract  PDF Supporting info

238. D. Casanova and A. I. Krylov
Spin-flip methods in quantum chemistry
Phys. Chem. Chem. Phys.  22, 4326 – 4342 (2020) Abstract  PDF 

236. P. Pokhilko, D. Izmodenov, and A. I. Krylov
Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets
J. Chem. Phys.  152, 034105 (2020) Abstract  PDF Supporting info

197. N. Orms and A. I. Krylov
Singlet-triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory
Phys. Chem. Chem. Phys. 20, 13095 – 13662 (2018) Abstract  PDF Supporting info

194. N. Orms, D. R. Rehn, A. Dreuw, and A. I. Krylov
Characterizing bonding patterns in diradicals and triradicals by density-based wave function analysis: A uniform approach
J. Chem. Theo. Comp. 14, 638 – 648 (2018) Abstract  PDF 

157. A. V. Luzanov, D. Casanova, X. Feng, and A. I. Krylov
Quantifying charge resonance and multiexciton character in coupled chromophores by charge and spin cumulant analysis
J. Chem. Phys. 142, 224104 (2015) Abstract  PDF 

149. S. Matsika, X. Feng, A.V. Luzanov, and A.I. Krylov
What we can learn from the norms of one-particle density matrices, and what we can't: Some results for interstate properties in model singlet fission systems
J. Phys. Chem. A 118, 11943 – 11955 (2014) Abstract  PDF Supporting info

62. A. I. Krylov
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The hitchhiker's guide to Fock space
Ann. Rev. Phys. Chem. 59, 433 – 462 (2008) Abstract  PDF 

58. A.A. Golubeva, A.V. Nemukhin, S.J. Klippenstein, L.B. Harding, and A.I. Krylov
Performance of the spin-flip and multi-reference methods for bond-breaking in hydrocarbons: A benchmark study
J. Phys. Chem. A 111, 13264 – 13271 (2007) Abstract  PDF (162 kB) 

42. L. V. Slipchenko and A. I. Krylov
Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations
J. Chem. Phys. 123, 84107 (2005) Abstract  PDF (173 kB) 

39. A. I. Krylov
The spin-flip equation-of-motion coupled-cluster electronic structure method for a description of excited states, bond-breaking, diradicals, and triradicals
Acc. Chem. Res. 39, 83 – 91 (2006) Abstract  PDF (246 kB) 

38. S. V. Levchenko, T. Wang, and A. I. Krylov
Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions
J. Chem. Phys. 122, 224106 (2005) Abstract  PDF (146 kB) 

34. S. V. Levchenko and A. I. Krylov
Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: Theory and application to cyclobutadiene
J. Chem. Phys. 120, 175 – 185 (2004) Abstract  PDF (195 kB) 

31. J. S. Sears, C. D. Sherrill, and A. I. Krylov
A spin-complete version of the spin-flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions?
J. Chem. Phys. 118, 9084 – 9094 (2003) Abstract  PDF (150 kB) 

27. A. I. Krylov, L. V. Slipchenko, and S. V. Levchenko
Breaking the curse of the non-dynamical correlation problem: The spin-flip method
ACS Symposium Series 958, 89 – 102 (2007) PDF (657 kB) 

20. A. I. Krylov
Size-consistent wave functions for bond-breaking: The equation-of-motion spin-flip model
Chem. Phys. Lett. 338, 375 – 384 (2001) Abstract  PDF (114 kB)